搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs/O沉积Na2KSb光电阴极表面的第一性原理研究

王麒铭 张益军 王兴超 王亮 金睦淳 任玲 刘晓荣 钱芸生

引用本文:
Citation:

Cs/O沉积Na2KSb光电阴极表面的第一性原理研究

王麒铭, 张益军, 王兴超, 王亮, 金睦淳, 任玲, 刘晓荣, 钱芸生

First-principles study of Cs/O deposited Na2KSb photocathode surface

Wang Qi-Ming, Zhang Yi-Jun, Wang Xing-Chao, Wang Liang, Jin Mu-Chun, Ren Ling, Liu Xiao-Rong, Qian Yun-Sheng
PDF
HTML
导出引用
  • Na2KSb光电阴极在光电倍增管、图像增强器、真空电子源等领域具有重要应用. 为指导高灵敏度Na2KSb光电阴极的制备, 采用第一性原理计算方法, 研究不同表面取向和原子终止面的Na2KSb表面模型, 获得稳定且最有利于电子发射的表面结构. 基于该表面进一步研究了不同覆盖度下的Cs原子沉积和Cs/O原子共沉积对Na2KSb表面电子结构和光学性质的影响. 对比表面能、吸附能和吸附前后的功函数结果表明, Na2KSb (111) K表面具有优越的电子发射能力以及良好的稳定性. 当Na2KSb (111) K表面吸附2/4单层的Cs原子和1/4单层O原子时, 获得最大功函数下降量0.16 eV. 表面吸附Cs/O原子有利于电荷往表面上方转移, 并产生电荷累积, 能形成有效表面偶极矩. 通过分析能带结构和态密度, 发现吸附Cs原子对导带底存在额外的能带贡献, 且引入O原子吸附后价带发生上移. 此外, 吸附Cs/O原子有利于增强表面近红外光吸收, 但是会导致表面紫外和可见光吸收变差.
    Na2KSb photocathodes have many applications in vacuum optoelectronic devices, such as photomultiplier tubes, image intensifiers, and streak image tubes for high-speed detection and imaging in extremely weak light environments, due to their advantages of high temperature resistance, small dark current, low vacuum requirement, low fabrication cost and high fabrication flexibility. In addition, this type of photocathode has important application prospect in high brightness accelerator photoinjectors. To guide the fabrication of high-sensitivity Na2KSb photocathodes, Na2KSb surfaces with different surface orientations and atom terminations are investigated by the first-principles calculation method based on the density functional theory to obtain the most stable and most favorable surface for electron emission. From the perspectives of surface energy, adsorption energy, and work function before and after Cs adsorption, it is revealed that the Na2KSb (111) K surface exhibits superior surface stability and electron emission capability. Furthermore, the electronic structure and optical properties of Cs adsorption and Cs/O co-adsorption on the Na2KSb (111) K surface under different Cs coverages are analyzed, and the mechanism of Cs/O deposition on Na2KSb surface is studied. The adsorption energy of Cs in the Cs/O adsorption model is much larger than that in the single Cs adsorption model, indicating that the adsorption of O atoms on the Na2KSb surface can make the adsorption of Cs atoms on the surface stronger, and thus increasing the adhesion of Cs atoms on the surface. After adsorption of Cs on the Na2KSb (111)K surface, the surface work function only decreases by 0.02 eV, while the maximum work function decrease for the Cs/O adsorbed surface is 0.16 eV, with the Cs coverage of 2/4 ML and the O coverage of 1/4 ML. The adsorption of Cs/O atoms on the surface facilitates the charge transfer above the surface and results in charge accumulation, which can form the effective surface dipole moment. The magnitude of the surface dipole moment is directly related to the change of work function. Furthermore, through the analysis of the electronic band structure and density of states, it is found that the adsorbed Cs atoms have additional contribution to the band structure near the conduction band minimum. After the introduction of O atoms, the valence band moves up, also the bottom of the conduction band and the top of the valence band become flat. The Cs/O deposition is beneficial to increasing the absorption of near-infrared light on the Na2KSb surface, but it will reduce the absorption of ultraviolet light and visible light, and the refractive index will also decrease. This work has a certain reference significance for understanding the optimal emission surface of Na2KSb photocathode and the mechanism of surface Cs/O deposition.
      通信作者: 张益军, zhangyijun423@126.com ; 钱芸生, yshqian@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62271259, U2141239)和国家重大科学仪器设备开发专项(批准号: 2016YFF0100400)资助的课题.
      Corresponding author: Zhang Yi-Jun, zhangyijun423@126.com ; Qian Yun-Sheng, yshqian@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271259, U2141239) and the Special Funds of the Major Scientific Instruments and Equipment Development of China (Grant No. 2016YFF0100400).
    [1]

    Hamamatsu Photonics K. K. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v4E.pdf [2023-6-1]

    [2]

    Trucchi D M, Melosh N A 2017 MRS Bull. 42 488Google Scholar

    [3]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

    [4]

    Maxson J, Cultrera L, Gulliford C, Bazarov I 2015 Appl. Phys. Lett. 106 234102Google Scholar

    [5]

    Wang Y, Mamun M A, Adderley P, et al. 2020 Phys. Rev. Accel. Beams 23 103401Google Scholar

    [6]

    Cultrera L, Gulliford C, Bartnik A, Lee H, Bazarov I 2016 Appl. Phys Lett. 108 134105Google Scholar

    [7]

    Yang B 1989 Appl. Phys Lett. 54 2548Google Scholar

    [8]

    Rusetsky V S, Golyashov V A, Eremeev S V, et al. 2022 Phys. Rev. Lett. 129 166802Google Scholar

    [9]

    Erjavec B 1994 Vacuum 45 617Google Scholar

    [10]

    Galan L, Bates Jr C W 1981 J. Phys. D: Appl. Phys. 14 293

    [11]

    Dolizy P 1980 Vacuum 30 489Google Scholar

    [12]

    McCarroll W H, Paff R J, Sommer A H 1971 J. Appl. Phys. 42 569Google Scholar

    [13]

    Erjavec B 1996 Appl. Surf. Sci. 103 343Google Scholar

    [14]

    Guo T L, Gao H R 1991 Appl. Phys. Lett. 58 1757Google Scholar

    [15]

    Guo T L, Gao H R 1993 Appl. Surf. Sci. 70 355

    [16]

    Guo T L 1996 Thin Solid Films 281 379

    [17]

    Cultrera L, Karkare S, Lillard B, et al. 2013 Appl. Phys Lett. 103 103504Google Scholar

    [18]

    Cultrera L, Lee H, Bazarov I 2016 J. Vac. Sci. Technol. , B 34 011202Google Scholar

    [19]

    Ettema A R H F, Groot R A 2000 Phys. Rev. B 61 10035Google Scholar

    [20]

    Murtaza G, Ullah M, Ullah N, Rani M, et al. 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [21]

    Amador R, Saßnick H D, Cocchi C 2021 J. Phys. Condens. Matter 33 365502Google Scholar

    [22]

    Schier R, Saßnick H D, Cocchi C 2022 Phys. Rev. Mater. 6 125001Google Scholar

    [23]

    Wang X C, Zhang K M, Jin M C, Ren L, Han Y F, Wang Q L, Zhang Y J 2022 Solid State Commun. 356 114960Google Scholar

    [24]

    Wang G X, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399

    [25]

    Shen Y, Yang X D, Bian Y, Chen L, Tang K, Wan J G, Zhang R, Zheng Y D, Gu S L 2018 Appl. Surf. Sci. 457 150Google Scholar

    [26]

    向世明, 倪国强 1999 光电子成像器件原理 (北京: 国防工业出版社) 第291页

    Xiang S M, Ni G Q 1999 The Principle of Optoelectronic Imaging Devices (Beijing: National Defense Industry Press) p291

    [27]

    Karkare S, Boulet L, Singh A, Hennig R, Bazarov I 2015 Phys. Rev. B 91 035408Google Scholar

    [28]

    Shaltaf R, Mete E, Ellialtioglu S, 2005 Phys. Rev. B 72 205415Google Scholar

    [29]

    Hogan C, Paget D, Garreau Y, Sauvage M, Onida G, Reining L, Chiaradia P, Corradini V 2003 Phys. Rev. B 68 205313Google Scholar

  • 图 1  不同Na2KSb表面模型的表面能和功函数

    Fig. 1.  Surface energy and work function of different Na2KSb surface models.

    图 2  (a) Na2KSb (111) K表面的Cs, O原子吸附位; (b) 不同Cs/O覆盖度的吸附表面模型; (c) 不同吸附模型的总能量; (d) 不同吸附模型的Cs吸附能

    Fig. 2.  (a) Adsorption sites for Cs atoms and O atoms on Na2KSb (111) K surface; (b) adsorption surface models with different Cs/O coverages; (c) the total energies of different adsorption models; (d) the adsorption energies of isolated Cs atom of different adsorption models.

    图 3  Na2KSb (111) K表面Cs吸附和Cs/O吸附前后的 (a) Hartree静电势和 (b) 功函数和亲和势

    Fig. 3.  (a) Hartree electrostatic potential and (b) work function and electron affinity for the Na2KSb (111) K surfaces before and after adsorption of Cs and Cs/O.

    图 4  CDD俯视图和侧视图(蓝色和黄色区域分别代表电荷的积累和耗尽)

    Fig. 4.  Top and side views of CDD (the blue and yellow regions represent the charge accumulation and charge depletion, respectively).

    图 5  (a) 平均偶极子电荷量变化; (b) 平均偶极子长度变化; (c) 表面偶极矩和功函数变化

    Fig. 5.  (a) Changes of average dipole charge; (b) changes of the average dipole length; (c) changes of surface dipole moment and work function.

    图 6  (a) 清洁表面能带结构; (b) Cs覆盖表面能带结构(Cs覆盖度: 2/4 ML, 紫红色曲线表示Cs吸附产生的能带贡献); (c) Cs覆盖表面的Cs原子6s轨道PDOS; (d) Cs/O覆盖表面能带结构(Cs覆盖度: 2/4 ML, O覆盖度: 1/4 ML, 紫红色曲线表示Cs/O吸附产生的能带贡献); (e) Cs/O覆盖表面的Cs原子6s轨道PDOS; (f) Cs/O覆盖表面的O原子2p轨道PDOS

    Fig. 6.  (a) Band structure for clean surface; (b) band structure for Cs-covered surface (Cs coverage: 2/4 ML, the magenta curve represents the energy band contribution from Cs adsorption); (c) PDOS of the 6s orbit of Cs atoms on the Cs-covered surface; (d) band structure for Cs/O-covered surface (Cs coverage: 2/4 ML, O coverage: 1/4 ML, the magenta curve represents the energy band contribution from Cs/O adsorption); (e) PDOS of the 6s orbit of Cs atoms on the Cs/O-covered surface; (f) PDOS of 2p orbit of O atom on the Cs/O-covered surface.

    图 7  不同Cs覆盖度下表面模型的光学性质 (a) 折射率; (b) 消光系数

    Fig. 7.  Optical properties of adsorption surface models with different Cs coverages: (a) Refractive index; (b) extinction coefficient.

  • [1]

    Hamamatsu Photonics K. K. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v4E.pdf [2023-6-1]

    [2]

    Trucchi D M, Melosh N A 2017 MRS Bull. 42 488Google Scholar

    [3]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

    [4]

    Maxson J, Cultrera L, Gulliford C, Bazarov I 2015 Appl. Phys. Lett. 106 234102Google Scholar

    [5]

    Wang Y, Mamun M A, Adderley P, et al. 2020 Phys. Rev. Accel. Beams 23 103401Google Scholar

    [6]

    Cultrera L, Gulliford C, Bartnik A, Lee H, Bazarov I 2016 Appl. Phys Lett. 108 134105Google Scholar

    [7]

    Yang B 1989 Appl. Phys Lett. 54 2548Google Scholar

    [8]

    Rusetsky V S, Golyashov V A, Eremeev S V, et al. 2022 Phys. Rev. Lett. 129 166802Google Scholar

    [9]

    Erjavec B 1994 Vacuum 45 617Google Scholar

    [10]

    Galan L, Bates Jr C W 1981 J. Phys. D: Appl. Phys. 14 293

    [11]

    Dolizy P 1980 Vacuum 30 489Google Scholar

    [12]

    McCarroll W H, Paff R J, Sommer A H 1971 J. Appl. Phys. 42 569Google Scholar

    [13]

    Erjavec B 1996 Appl. Surf. Sci. 103 343Google Scholar

    [14]

    Guo T L, Gao H R 1991 Appl. Phys. Lett. 58 1757Google Scholar

    [15]

    Guo T L, Gao H R 1993 Appl. Surf. Sci. 70 355

    [16]

    Guo T L 1996 Thin Solid Films 281 379

    [17]

    Cultrera L, Karkare S, Lillard B, et al. 2013 Appl. Phys Lett. 103 103504Google Scholar

    [18]

    Cultrera L, Lee H, Bazarov I 2016 J. Vac. Sci. Technol. , B 34 011202Google Scholar

    [19]

    Ettema A R H F, Groot R A 2000 Phys. Rev. B 61 10035Google Scholar

    [20]

    Murtaza G, Ullah M, Ullah N, Rani M, et al. 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [21]

    Amador R, Saßnick H D, Cocchi C 2021 J. Phys. Condens. Matter 33 365502Google Scholar

    [22]

    Schier R, Saßnick H D, Cocchi C 2022 Phys. Rev. Mater. 6 125001Google Scholar

    [23]

    Wang X C, Zhang K M, Jin M C, Ren L, Han Y F, Wang Q L, Zhang Y J 2022 Solid State Commun. 356 114960Google Scholar

    [24]

    Wang G X, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399

    [25]

    Shen Y, Yang X D, Bian Y, Chen L, Tang K, Wan J G, Zhang R, Zheng Y D, Gu S L 2018 Appl. Surf. Sci. 457 150Google Scholar

    [26]

    向世明, 倪国强 1999 光电子成像器件原理 (北京: 国防工业出版社) 第291页

    Xiang S M, Ni G Q 1999 The Principle of Optoelectronic Imaging Devices (Beijing: National Defense Industry Press) p291

    [27]

    Karkare S, Boulet L, Singh A, Hennig R, Bazarov I 2015 Phys. Rev. B 91 035408Google Scholar

    [28]

    Shaltaf R, Mete E, Ellialtioglu S, 2005 Phys. Rev. B 72 205415Google Scholar

    [29]

    Hogan C, Paget D, Garreau Y, Sauvage M, Onida G, Reining L, Chiaradia P, Corradini V 2003 Phys. Rev. B 68 205313Google Scholar

  • [1] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能. 物理学报, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [4] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [5] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [6] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [7] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [9] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [10] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [11] 周华杰, 徐秋霞. Ni全硅化金属栅功函数调节技术研究. 物理学报, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [12] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [13] 宋红州, 张 平, 赵宪庚. Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算. 物理学报, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [14] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [15] 宋红州, 张 平, 赵宪庚. 原子氢在Be(1010)薄膜上吸附的第一性原理计算. 物理学报, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [16] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [17] 陆赟豪, 段效邦, 吕 萍, 张寒洁, 李海洋, 鲍世宁, 何丕模. 三萘基膦在Ag(110)面上沉积的紫外光电子能谱研究. 物理学报, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [18] 姜泽辉, 许素娟, 陈 唯, 门守强, 陆坤权. 像偶极子法计算导体颗粒簇团的偶极矩. 物理学报, 2000, 49(8): 1457-1463. doi: 10.7498/aps.49.1457
    [19] 董传华. 原子偶极矩的高阶压缩. 物理学报, 1996, 45(6): 946-952. doi: 10.7498/aps.45.946
    [20] 陈陆君, 王宁, 罗恩泽. Cs/Ir(001)吸附系统的功函数与电子转移. 物理学报, 1993, 42(7): 1149-1152. doi: 10.7498/aps.42.1149-2
计量
  • 文章访问数:  784
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 修回日期:  2024-02-04
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回