搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au(110)表面结构和氧原子吸附的第一性原理研究

王芒芒 宁华 陶向明 谭明秋

引用本文:
Citation:

Au(110)表面结构和氧原子吸附的第一性原理研究

王芒芒, 宁华, 陶向明, 谭明秋

Density-functional theory investigation of atomic geometryand oxygen adsorption of Au(110) surface

Wang Mang-Mang, Ning Hua, Tao Xiang-Ming, Tan Ming-Qiu
PDF
导出引用
  • 用密度泛函理论(DFT)研究了金属Au(110)表面结构以及氧原子的吸附状态.计算得到Au(110)-(1×2)缺列再构表面原子的弛豫分别是-15.0%(Δd12/d0)和-1.1%(Δd23/d0),表面能为52.7 meV/2,功函数Φ=5.00 eV;Au(110)-(1×3)缺列再构表面的Δd1
    We have performed density-functional theory calculations of the atomic structure and the oxygen adsorption properties of Au(110) surfaces. The relaxations of missing-row reconstructed Au(110)-(1×2) surface are calculated to be -15.0%(Δd12/d0) and -1.1%(Δd23/d0). The relevant surface energy and workfunction are calculated to be 52.7 meV/2 and 5.00 eV, respectively. In the case of missing-row reconstructed Au(110)-(1×3) surface the surface atomic relaxations are calculated to be -20.5 %(Δd12/d0) and +2.7 %(Δd23/d0) which are quite differente from those of Au(110)-(1×2). However, in the later case, the surface energy and workfunction are found to be very close to those of missing-row reconstructed Au(110)-(1×2) surface, i.e., 53.4 meV/2 and 4.98 eV. We have simulated the scanning tunneling microscope (STM) images of both reconstructed surfaces and found that the missing row exhibits a remarkable hollow in the STM morphology. The further calculation of oxygen adsorption on both surfaces reveals that the adsorption energies in these cases are negative. These results indicate that the Au(110) surface is free from oxygen adsorption and reaction, showing highly chemical inertia.
    • 基金项目: 浙江省教育厅科研项目(批准号:Y200804278)资助的课题.
    [1]

    Hutchings G J 1996 Gold Bull. 29 123

    [2]

    Hutchings G J 2002 Catal. Today. 72 11

    [3]

    Haruta M, Kobayashi T, Sano H, Yamada N 1987 Chem. Lett. 16 405

    [4]

    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B 1993 J. Catal. 144 175

    [5]

    Sault A G, Madix R J, Campbell C T 1986 Surf. Sci. 169 347

    [6]

    Canning N D S, Outka D, Madix R J 1984 Surf. Sci. 141 240

    [7]

    Gottfried J M, Elghobashi N, Schroeder S L M, Christmann K 2003 Surf. Sci. 523 89

    [8]

    Linsmeier Ch, Wanner J 2000 Surf. Sci. 454-456 305

    [9]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K 2002 Surf. Sci. 511 65

    [10]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K 2003 Surf. Sci. 525 184

    [11]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K2 003 Surf. Sci. 525 197

    [12]

    Sturmat M, Koch R, Rieder K H 1996 Phys. Rev. Lett. 77 5071

    [13]

    Koch R, Sturmat M, Schulz J J 2000 Surf. Sci. 454-456 543

    [14]

    Moritz W, Wolf D 1979 Surf. Sci. 88 L29

    [15]

    Bining G, Rohrer H, Gerber Ch, Weibel E 1983 Surf. Sci. 131 L379

    [16]

    Gritsch T, Coulman D, Behm R J, Ertl G 1991 Surf. Sci. 527 297

    [17]

    Olivier S, Tréglia G, Saúl A, Willaime F 2006 Surf. Sci. 600 5131

    [18]

    Pyykkö P 1988 Chem Rev. 88 563

    [19]

    Pyykkö P 2004 Angew. Chem. 116 4512

    [20]

    Smit R H M, Untiedt C, Yanson A I, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 266102

    [21]

    Thijssen W H A, Strange M, aan de Brugh J M J, van Ruitenbeek J M 2008 New J. Phys. 10 033005

    [22]

    Landmann M, Rauls E, Schmidt W G 2009 Phys. Rev. B 79 045412

    [23]

    Landmann M, Rauls E, Schmidt W G 2009 J. Phys. Chem. C 113 5690

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Furthermüller J 1996 Comput. Mater. Sci. 6 15 Kresse G, Furthermüller J 1996 Phys. Rev. B 55 11196

    [26]

    Vanderbilt D 1994 Phys. Rev. B 41 7892

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Huang G Y, Wang C Y, Wang J T 2010 Chin. Phys. B 19 013101

    [29]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [30]

    Chiarotti G 1993 in Physics of Solid Surfaces-Structure, Landolt-Börnstein-Group Ⅲ Condensed Matter ( Vol. 24a) (New York: Springer)

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Payne M C, Teter M P, Allan D C, Arias A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [33]

    Huber K P, Herzberg G 1997 Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure (Vol. Ⅳ) (New York: Van Nostrand Reinhold)

    [34]

    Stull D R, Prophet H 1971 JANAF Thermochemical Tables, 2nd ed.

    [35]

    Fasolino A, Selloni A, Shkrebtii A 1993 in Landolt-Börnstein-Group Ⅲ Condensed Matter, Physics ofSolid Surfaces-Structure (Vol. 24a) (New York: Springer)

    [36]

    Moeller J, Snowdon K J, Heiland W 1986 Surf. Sci. 178 475

    [37]

    Copel M, Gustafsson T 1986 Phys. Rev. Lett. 57 723

    [38]

    Moritz W, Wolf D 1985 Surf. Sci. 163 L655

    [39]

    Vlieg E, Robinson I K, Kern K 1990 Surf. Sci. 233 248

    [40]

    Haberle P, Fenter P, Gustafsson T 1989 Phys. Rev. B 39 5810

    [41]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [42]

    Chen C J 1993 Introduction to Scanning Tunneling Microscopy (Oxford: Oxford University Press)

    [43]

    Tao X M, Tan M Q, Zhao X X, Chen W B, Chen X, Shang X F 2006 Surf. Sci. 600 3419

    [44]

    Chen W B, Tao X M, Chen X, Tan M Q 2008 Acta. Phys. Sin. 57 488 (in Chinese) [陈文斌、陶向明、陈 鑫、谭明秋 2008 物理学报 57 488]

    [45]

    Cai J Q, Tao X M, Chen W B, Zhao X X, Tan M Q 2005 Acta Phys. Sin 54 5350 (in Chinese) [蔡建秋、陶向明、陈文斌、赵新新、谭明秋 2005 物理学报 54 5350]

    [46]

    Kaghazchi P, Jacob T 2007 Phys. Rev. B 76 245425

  • [1]

    Hutchings G J 1996 Gold Bull. 29 123

    [2]

    Hutchings G J 2002 Catal. Today. 72 11

    [3]

    Haruta M, Kobayashi T, Sano H, Yamada N 1987 Chem. Lett. 16 405

    [4]

    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B 1993 J. Catal. 144 175

    [5]

    Sault A G, Madix R J, Campbell C T 1986 Surf. Sci. 169 347

    [6]

    Canning N D S, Outka D, Madix R J 1984 Surf. Sci. 141 240

    [7]

    Gottfried J M, Elghobashi N, Schroeder S L M, Christmann K 2003 Surf. Sci. 523 89

    [8]

    Linsmeier Ch, Wanner J 2000 Surf. Sci. 454-456 305

    [9]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K 2002 Surf. Sci. 511 65

    [10]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K 2003 Surf. Sci. 525 184

    [11]

    Gottfried J M, Schmidt K J, Schroeder S L M, Christmann K2 003 Surf. Sci. 525 197

    [12]

    Sturmat M, Koch R, Rieder K H 1996 Phys. Rev. Lett. 77 5071

    [13]

    Koch R, Sturmat M, Schulz J J 2000 Surf. Sci. 454-456 543

    [14]

    Moritz W, Wolf D 1979 Surf. Sci. 88 L29

    [15]

    Bining G, Rohrer H, Gerber Ch, Weibel E 1983 Surf. Sci. 131 L379

    [16]

    Gritsch T, Coulman D, Behm R J, Ertl G 1991 Surf. Sci. 527 297

    [17]

    Olivier S, Tréglia G, Saúl A, Willaime F 2006 Surf. Sci. 600 5131

    [18]

    Pyykkö P 1988 Chem Rev. 88 563

    [19]

    Pyykkö P 2004 Angew. Chem. 116 4512

    [20]

    Smit R H M, Untiedt C, Yanson A I, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 266102

    [21]

    Thijssen W H A, Strange M, aan de Brugh J M J, van Ruitenbeek J M 2008 New J. Phys. 10 033005

    [22]

    Landmann M, Rauls E, Schmidt W G 2009 Phys. Rev. B 79 045412

    [23]

    Landmann M, Rauls E, Schmidt W G 2009 J. Phys. Chem. C 113 5690

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Furthermüller J 1996 Comput. Mater. Sci. 6 15 Kresse G, Furthermüller J 1996 Phys. Rev. B 55 11196

    [26]

    Vanderbilt D 1994 Phys. Rev. B 41 7892

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Huang G Y, Wang C Y, Wang J T 2010 Chin. Phys. B 19 013101

    [29]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [30]

    Chiarotti G 1993 in Physics of Solid Surfaces-Structure, Landolt-Börnstein-Group Ⅲ Condensed Matter ( Vol. 24a) (New York: Springer)

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Payne M C, Teter M P, Allan D C, Arias A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [33]

    Huber K P, Herzberg G 1997 Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure (Vol. Ⅳ) (New York: Van Nostrand Reinhold)

    [34]

    Stull D R, Prophet H 1971 JANAF Thermochemical Tables, 2nd ed.

    [35]

    Fasolino A, Selloni A, Shkrebtii A 1993 in Landolt-Börnstein-Group Ⅲ Condensed Matter, Physics ofSolid Surfaces-Structure (Vol. 24a) (New York: Springer)

    [36]

    Moeller J, Snowdon K J, Heiland W 1986 Surf. Sci. 178 475

    [37]

    Copel M, Gustafsson T 1986 Phys. Rev. Lett. 57 723

    [38]

    Moritz W, Wolf D 1985 Surf. Sci. 163 L655

    [39]

    Vlieg E, Robinson I K, Kern K 1990 Surf. Sci. 233 248

    [40]

    Haberle P, Fenter P, Gustafsson T 1989 Phys. Rev. B 39 5810

    [41]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [42]

    Chen C J 1993 Introduction to Scanning Tunneling Microscopy (Oxford: Oxford University Press)

    [43]

    Tao X M, Tan M Q, Zhao X X, Chen W B, Chen X, Shang X F 2006 Surf. Sci. 600 3419

    [44]

    Chen W B, Tao X M, Chen X, Tan M Q 2008 Acta. Phys. Sin. 57 488 (in Chinese) [陈文斌、陶向明、陈 鑫、谭明秋 2008 物理学报 57 488]

    [45]

    Cai J Q, Tao X M, Chen W B, Zhao X X, Tan M Q 2005 Acta Phys. Sin 54 5350 (in Chinese) [蔡建秋、陶向明、陈文斌、赵新新、谭明秋 2005 物理学报 54 5350]

    [46]

    Kaghazchi P, Jacob T 2007 Phys. Rev. B 76 245425

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [3] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应. 物理学报, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [4] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [5] 吕兵, 令狐荣锋, 宋晓书, 王晓璐, 杨向东, 贺端威. 氧原子在Pt(111)表面和次表层的吸附与扩散. 物理学报, 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [6] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [7] 姚蕊, 王福合, 周云松. 氧原子在Zr(0001)表面附近的扩散. 物理学报, 2009, 58(13): 177-S182. doi: 10.7498/aps.58.177
    [8] 肖 冰, 冯 晶, 陈敬超, 严继康, 甘国友. 金红石型TiO2(110)表面性质及STM形貌模拟. 物理学报, 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [9] 陈文斌, 陶向明, 陈 鑫, 谭明秋. Ag(100)表面氧吸附的密度泛函理论和STM图像研究. 物理学报, 2008, 57(1): 488-495. doi: 10.7498/aps.57.488
    [10] 舒 瑜, 张建民, 徐可为. Pt(110)表面自吸附原子能量和力的改进分析型嵌入原子法分析. 物理学报, 2006, 55(8): 4103-4110. doi: 10.7498/aps.55.4103
    [11] 戴佳钰, 张栋文, 袁建民. Xe原子吸附对GaAs(110)表面重构的影响. 物理学报, 2006, 55(11): 6073-6079. doi: 10.7498/aps.55.6073
    [12] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用. 物理学报, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [13] 陶向明, 谭明秋, 徐小军, 蔡建秋, 陈文斌, 赵新新. c(2×2)O吸附Cu(001)表面结构、电子态与STM图像的研究. 物理学报, 2004, 53(11): 3858-3862. doi: 10.7498/aps.53.3858
    [14] 李群祥, 杨金龙, 侯建国, 汪克林, 朱清时. C60不同吸附取向的STM图象的理论模拟. 物理学报, 1999, 48(8): 1477-1483. doi: 10.7498/aps.48.1477
    [15] 李群祥, 杨金龙, 丁长庚, 汪克林, 李家明. STM针尖和外电场在Si(111)-7×7表面单原子操纵中的作用. 物理学报, 1999, 48(6): 1086-1094. doi: 10.7498/aps.48.1086
    [16] 向 嵩, 庄 军, 刘 磊. 吸附原子在Ag,Pt,Au(110)表面上的自扩散现象. 物理学报, 1998, 47(4): 678-685. doi: 10.7498/aps.47.678
    [17] 贺仲卿, 侯晓远, 丁训民. GaSb(100)的表面再构. 物理学报, 1992, 41(8): 1315-1321. doi: 10.7498/aps.41.1315
    [18] 胡兹莆, 潘必才, 范伟成. 倍层法计算碱金属诱导的Cu(110)-(1×2)表面再构. 物理学报, 1990, 39(6): 115-120. doi: 10.7498/aps.39.115
    [19] 邢益荣, W. RANKE. 氧在硅表面上吸附的晶向关系. 物理学报, 1986, 35(1): 110-114. doi: 10.7498/aps.35.110
    [20] 俞鸣人, 王虹川, 方志烈, 侯晓远, 王迅. InP清洁表面上电子感应吸附氧的研究. 物理学报, 1984, 33(12): 1713-1718. doi: 10.7498/aps.33.1713
计量
  • 文章访问数:  8893
  • PDF下载量:  864
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-18
  • 修回日期:  2010-06-24
  • 刊出日期:  2011-02-05

/

返回文章
返回