搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧原子在Pt(111)表面和次表层的吸附与扩散

吕兵 令狐荣锋 宋晓书 王晓璐 杨向东 贺端威

引用本文:
Citation:

氧原子在Pt(111)表面和次表层的吸附与扩散

吕兵, 令狐荣锋, 宋晓书, 王晓璐, 杨向东, 贺端威

Adsorption and diffusion of oxygen on Pt (111) surface and subsurface

Lv Bing, Linghu Rong-Feng, Song Xiao-Shu, Wang Xiao-Lu, Yang Xiang-Dong, He Duan-Wei
PDF
导出引用
  • 氧原子在Pt表面的吸附和扩散是理解氧化和腐蚀等问题的基础.基于密度泛函理论和周期平板模型研究了氧原子在Pt(111)表面及次表层的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.采用CI-NEB方法讨论了氧原子在Pt(111)表面和次表层的扩散过程.研究结果表明氧原子在Pt(111)表面的扩散比较容易,而氧原子向次表层的扩散相对较难,这主要是因为次表层的扩散需要经过一个Pt原子层,必须克服一定的能垒,从而说明过渡金属Pt具有很强的抗氧化性.
    The adsorption and the diffusion of oxygen on the Pt (111) surface and subsurface are basic issues to understand oxidation and corrosion, which are investigated based on the density functional theory and the periodic slab model. The absorption structure is analyzed through scanning tunneling microscopy (STM) image. The diffusion processes of oxygen atoms on Pt (111) surface and subsurface are discussed in detail using the CI-NEB method. The results show that the diffusion of oxygen atoms over Pt (111) surface is easier than the diffusion into the subsurface, which is mainly because the diffusion of the subsurface needs to go through a layer of Pt atoms and must overcome a certain energy barrier. Transition metal Pt is indicated to have a strong antioxidant activity.
    • 基金项目: 国家自然科学基金(批准号:10974139,10964002),贵州省科技厅自然科学基金(批准号:黔科合J字LKS[2009]06,黔科合J字[2010]2146,黔科合J字[2010]2137);贵州师范大学博士科研基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002),the Science-Technology Founda- tion of Guizhou province of China (Grant Nos. LKS[2009]06, [2010]2146, [2010] 2137), and the Scientific Research Foundation for Doctors of Guizhou Normal University.
    [1]

    Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M 2007 Science 315 493

    [2]
    [3]

    Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M 2007 Nat. Mater. 6 241

    [4]

    Mun B S, Watanabe M, Rossi M, Stamenkovic V, Markovic N M, Ross P N 2005 J. Chem. Phys. 123 204717

    [5]
    [6]
    [7]

    Markovic N M, Schmidt T J, Stamenkovic V, Ross P N 2001 Fuel Cells 1 105

    [8]

    Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R 2005 Angew. Chem. Int. Ed. 44 2132

    [9]
    [10]

    Ford D C, Xu Y, Mavrikakis M 2005 Surf. Sci. 587 159

    [11]
    [12]

    Yang Z X, Yu X, Ma D W 2009 Acta Phys. Chim. Sin. 25 2329 (in Chinese) [杨宗献, 于小虎, 马东伟 2009 物理化学学报 25 2329]

    [13]
    [14]
    [15]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 S176 (in Chinese) [姚蕊, 王福献, 周云松 2009 物理学报 58 S176]

    [16]

    David T, Franc oise N 2010 Phys. Rev. B 81 174108

    [17]
    [18]

    Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6042 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 物理学报 55 6042]

    [19]
    [20]

    Huang G Y, Wang C Y, Wang J T 2010 Chin. Phys. B 19 13101

    [21]
    [22]

    Heinola K, Ahlgren T, Nordlund K, Keinonen J 2010 Phys. Rev. B 82 094102

    [23]
    [24]
    [25]

    Perdew J P, Chevary J A, Voso S H 1992 Phys. Rev. B 46 6671

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]
    [28]
    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]
    [31]

    Gonze X, Beuken J M, Caracas R 2002 Computational Materials Science 25 478

    [32]

    Lynch M, Hu P 2000 Surf. Sci. 458 1

    [33]
    [34]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 0745407

    [35]
    [36]
    [37]

    Krekelberg W P,Greeley J, Mavrikakis M 2004 J. Phys. Chem. B 108 987

    [38]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [39]
    [40]

    Sheppard D, Xiao P, Chemelewski W, Johnson D D, Henkelman G 2012 J. Chem. Phys. 136 074103

    [41]
    [42]
    [43]

    Sheppard D, Henkelman G 2011 J. Comp. Chem. 32 1769

  • [1]

    Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M 2007 Science 315 493

    [2]
    [3]

    Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M 2007 Nat. Mater. 6 241

    [4]

    Mun B S, Watanabe M, Rossi M, Stamenkovic V, Markovic N M, Ross P N 2005 J. Chem. Phys. 123 204717

    [5]
    [6]
    [7]

    Markovic N M, Schmidt T J, Stamenkovic V, Ross P N 2001 Fuel Cells 1 105

    [8]

    Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R 2005 Angew. Chem. Int. Ed. 44 2132

    [9]
    [10]

    Ford D C, Xu Y, Mavrikakis M 2005 Surf. Sci. 587 159

    [11]
    [12]

    Yang Z X, Yu X, Ma D W 2009 Acta Phys. Chim. Sin. 25 2329 (in Chinese) [杨宗献, 于小虎, 马东伟 2009 物理化学学报 25 2329]

    [13]
    [14]
    [15]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 S176 (in Chinese) [姚蕊, 王福献, 周云松 2009 物理学报 58 S176]

    [16]

    David T, Franc oise N 2010 Phys. Rev. B 81 174108

    [17]
    [18]

    Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6042 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 物理学报 55 6042]

    [19]
    [20]

    Huang G Y, Wang C Y, Wang J T 2010 Chin. Phys. B 19 13101

    [21]
    [22]

    Heinola K, Ahlgren T, Nordlund K, Keinonen J 2010 Phys. Rev. B 82 094102

    [23]
    [24]
    [25]

    Perdew J P, Chevary J A, Voso S H 1992 Phys. Rev. B 46 6671

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]
    [28]
    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]
    [31]

    Gonze X, Beuken J M, Caracas R 2002 Computational Materials Science 25 478

    [32]

    Lynch M, Hu P 2000 Surf. Sci. 458 1

    [33]
    [34]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 0745407

    [35]
    [36]
    [37]

    Krekelberg W P,Greeley J, Mavrikakis M 2004 J. Phys. Chem. B 108 987

    [38]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [39]
    [40]

    Sheppard D, Xiao P, Chemelewski W, Johnson D D, Henkelman G 2012 J. Chem. Phys. 136 074103

    [41]
    [42]
    [43]

    Sheppard D, Henkelman G 2011 J. Comp. Chem. 32 1769

计量
  • 文章访问数:  4356
  • PDF下载量:  1414
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-13
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

氧原子在Pt(111)表面和次表层的吸附与扩散

  • 1. 贵州师范大学物理与电子科学学院, 贵阳 550001;
  • 2. 四川大学原子与分子物理研究所, 成都 610065;
  • 3. 贵州师范学院物理与电子科学学院, 贵阳 550018
    基金项目: 

    国家自然科学基金(批准号:10974139,10964002),贵州省科技厅自然科学基金(批准号:黔科合J字LKS[2009]06,黔科合J字[2010]2146,黔科合J字[2010]2137)

    贵州师范大学博士科研基金资助的课题.

摘要: 氧原子在Pt表面的吸附和扩散是理解氧化和腐蚀等问题的基础.基于密度泛函理论和周期平板模型研究了氧原子在Pt(111)表面及次表层的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.采用CI-NEB方法讨论了氧原子在Pt(111)表面和次表层的扩散过程.研究结果表明氧原子在Pt(111)表面的扩散比较容易,而氧原子向次表层的扩散相对较难,这主要是因为次表层的扩散需要经过一个Pt原子层,必须克服一定的能垒,从而说明过渡金属Pt具有很强的抗氧化性.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回