搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeTe薄膜电性能优化及射频应用

帅陈杨 郑月军 陈强 马燕利 付云起

引用本文:
Citation:

GeTe薄膜电性能优化及射频应用

帅陈杨, 郑月军, 陈强, 马燕利, 付云起
cstr: 32037.14.aps.73.20241019

Optimization of electrical properties and radio frequency applications of GeTe thin film

Shuai Chen-Yang, Zheng Yue-Jun, Chen Qiang, Ma Yan-Li, Fu Yun-Qi
cstr: 32037.14.aps.73.20241019
PDF
HTML
导出引用
  • GeTe属于硫系相变材料中的一种, 利用热致相变特性可以动态实现低电阻率的晶态与高电阻率的非晶态之间可逆切换, 是忆阻器和非易失射频开关领域的重要功能材料. 本文以面向射频开关应用为出发点, 重点对磁控溅射制备的GeTe薄膜进行电性能优化研究. 通过综合分析衬底材料、溅射条件以及退火条件等因素对晶态GeTe薄膜电阻率的影响, 探索出低电阻率GeTe薄膜的有效制备条件. 结果表明, 制备的GeTe薄膜最低晶态电阻率达到3.6×10–6 Ω·m, 电阻比大于106. 此外, 基于规则的方形薄膜切片, 构建了一款零静态功耗并联型毫米波开关, 在1—40 GHz频带内, 插损小于2.4 dB, 隔离度大于19 dB, 展示了GeTe薄膜在宽带高性能分立式非易失射频开关领域的应用潜力.
    GeTe belongs to a chalcogenide phase change material, which can dynamically achieve reversible switching between the crystalline state of low resistivity and the amorphous state of high resistivity by utilizing the thermally induced phase change characteristics. The GeTe is an important functional material in the fields of memristors and nonvolatile radio frequency (RF) switches. For RF switch applications, this paper focuses on optimizing the electrical performance of GeTe thin films prepared by magnetron sputtering. By comprehensively analyzing the effects of substrate materials, sputtering conditions, and annealing conditions on the resistivity of crystalline GeTe films, effective conditions for preparing low resistivity GeTe films are explored. Fig. (a) shows that compared with the GeTe film on a SiO2 substrate, the film on an Al2O3 substrate can obtain higher crystallinity and lower resistivity. For the deposition power and pressure shown in Fig. (b), the combination of medium power (50–80 W) and low pressure (2–3 mTorr) is beneficial for low crystalline resistivity of GeTe film. Additionally, Fig. (c) shows that higher annealing temperature (350–400 ℃) can realize lower film resistivity. Finally, the experimental results show that the lowest crystalline resistivity of the prepared GeTe thin film reaches 3.6×10–6 Ω·m, and the resistance ratio is more than 106. Based on rectangular chips of GeTe film, a parallel millimeter-wave switch with zero static power is also constructed. As shown in Fig. (d), the insertion loss is less than 2.4 dB, and the isolation is greater than 19 dB in a 1–40 GHz frequency band, demonstrating the potential application of GeTe thin films in the field of broadband high-performance discrete nonvolatile RF switches.
      通信作者: 郑月军, zhengyuejun18@nudt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61901492, 61901493)资助的课题.
      Corresponding author: Zheng Yue-Jun, zhengyuejun18@nudt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61901492, 61901493).
    [1]

    Rangan S, Rappaport T S, Erkip E 2014 Proc. IEEE 102 366Google Scholar

    [2]

    Wu Z Y, Lu W, Bao X Y, Meng F B, Yang Z B, Sun Q, Zhao F Z, Wang Y T 2021 Int. J. Mod. Phys. B 35 15017Google Scholar

    [3]

    Sun P, Upadhyaya P, Jeong D, Jeong D H, Heo D, La Rue G S 2007 IEEE Microw. Wirel. Co. 17 352Google Scholar

    [4]

    Doan C H, Emami S, Niknejad A M, Brodersen R W 2005 IEEE J. Solid-State Circuits 40 144Google Scholar

    [5]

    Wolf R, Joseph A, Botula A, Slinkman J 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, USA, January 19–21, 2009 p1

    [6]

    Campbell C F, Dumka D C 2010 IEEE MTT-S International Microwave Symposium Anaheim, USA, May 23–28, 2010 p145

    [7]

    Daneshmand M, Mansour R R 2011 IEEE Microw. Mag. 12 92Google Scholar

    [8]

    Boles T, Brogle J, Hoag D, Curcio D 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011) Tel Aviv, Israel, November 7–9, 2011 p1

    [9]

    Jaffe M, Abou-Khalil M, Botula A, Ellis-Monaghan J, Gambino J, Gross J, He Z X, Joseph A, Phelps R, Shank S, Slinkman J, Wolf R 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, USA, January 26–28, 2015 p30

    [10]

    Stefanini R, Chatras M, Blondy P, Rebeiz G M 2011 IEEE MTT-S International Microwave Symposium Digest, Baltimore MD, USA, June 5–10, 2011 p1

    [11]

    Grant P, Denhoff M, Mansour R R 2004 Proceedings of the IEEE International Conference on MEMS, NANO and Smart Systems (ICMENS) Banff, Canada, August 25–27, 2004 p515

    [12]

    Tabata O, Tsuchiya T 2014 Reliability of MEMS: Testing of Materials and Devices (Hoboken: John Wiley & Sons) pp124–130

    [13]

    Pan K, Wang W, Shin E, Freeman K, Subramanyam G 2015 IEEE T. Electron Dev. 62 2959Google Scholar

    [14]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [15]

    Bahl S K, Chopra K L 1970 J. Appl. Phys. 41 2196Google Scholar

    [16]

    Raoux S, Cheng H Y, Munoz B, Jordan-Sweet J 2009 European Phase Change and Ovonic Science Symposium, 2009 p91

    [17]

    Raoux S, Ielmini D, Wuttig M, Karpov I 2012 MRS Bull. 37 118Google Scholar

    [18]

    Raoux S, Cheng H Y, Caldwell M A, Wong H S P 2009 Appl. Phys. Lett. 95 071910Google Scholar

    [19]

    Fantini P 2020 J. Phys. D Appl. Phys. 53 283002Google Scholar

    [20]

    Chua K, Shi L P, Zhao R, Lim K G, Chong T C, Schlesinger T E, Bain J A 2010 Appl. Phys. Lett. 97 183506Google Scholar

    [21]

    Wuttig M 2005 Nat. Mater. 4 265Google Scholar

    [22]

    Iwasaki H, Ide Y, Harigaya M, Kageyama Y, Fujimura I 1992 J. Appl. Phys. 31 461Google Scholar

    [23]

    Singh T, Mansour R R 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Ann Arbor, USA, July 16–18, 2018 p3

    [24]

    Bettoumi I, Gall N L, Blondy P 2022 IEEE Microw. Wirel. Co 32 52Google Scholar

    [25]

    Cruz L D L, Ivanov T, Birdwell A G, Weil J D, Kingkeo K, Zaghloul M 2023 IEEE Electron Device Lett. 70 4178Google Scholar

    [26]

    Charlet I, Guerber S, Naoui A, Charbonnier B, Dupré C, Lugo-Alvarez J, Hellion C, Allain M, Podevin F, Perret E 2024 IEEE Electron Device Lett. 45 500Google Scholar

    [27]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703Google Scholar

  • 图 1  Ge-Sb-Te系统的三元相图

    Fig. 1.  Ternary phase diagram of Ge-Sb-Te system.

    图 2  GeTe材料随温度变化的相变机制

    Fig. 2.  Phase transition mechanism in GeTe materials with the variation of temperature.

    图 3  样品5和样品6的XRD图谱

    Fig. 3.  XRD patterns of sample 5 and 6.

    图 4  AFM三维图像 (a) 玻璃衬底; (b) 蓝宝石衬底

    Fig. 4.  The 3D AFM patterns: (a) Glass substrate; (b) sapphire substrate.

    图 5  沉积条件对沉积速率的影响

    Fig. 5.  Influence of deposition condition on the deposition rate.

    图 6  三种样品的EDS能谱分析 (a) 3 mTorr; (b) 5 mTorr; (c) 10 mTorr

    Fig. 6.  EDS mapping for three samples: (a) 3 mTorr; (b) 5 mTorr; (c) 10 mTorr.

    图 7  沉积条件对薄膜方阻的影响

    Fig. 7.  Sheet resistance with the variation of deposition power and pressure.

    图 8  薄膜方阻随退火温度的变化

    Fig. 8.  Sheet resistance change of GeTe samples with the variation of annealing temperature.

    图 9  非晶态和晶态GeTe单元

    Fig. 9.  GeTe units for the amorphous state and crystalline state.

    图 10  GeTe薄膜样品照片 (a) 非晶态; (b) 晶态

    Fig. 10.  Photos of GeTe films: (a) Amorphous state; (b) crystalline state.

    图 11  AFM图谱 (a) 非晶态; (b) 晶态

    Fig. 11.  AFM patterns: (a) Amorphous state; (b) crystalline state.

    图 12  非晶态和晶态下, GeTe的XRD图谱

    Fig. 12.  XRD patterns of GeTe film in the amorphous and crystalline states.

    图 13  GeTe薄膜切片照片

    Fig. 13.  Photo of GeTe chips.

    图 14  基于GeTe的并联型开关 (a) 几何结构; (b) 实物样品

    Fig. 14.  Proposed parallel switch using GeTe chip: (a) Geometry; (b) sample.

    图 15  基于GeTe的并联型开关等效电路

    Fig. 15.  Equivalent circuit model of the proposed parallel switch using GeTe chip.

    图 16  衬底材料对隔离度的影响

    Fig. 16.  Effect of the substrate material on isolation.

    图 19  退火温度对隔离度的影响

    Fig. 19.  Effect of the annealing temperature on isolation.

    图 17  功率对隔离度的影响

    Fig. 17.  Effect of the deposition power on isolation.

    图 18  压强对隔离度的影响

    Fig. 18.  Effect of the deposition pressure on isolation.

    图 20  基于GeTe的并联型开关电阻测试图

    Fig. 20.  Schematic diagram of resistance measurement for GeTe parallel switch.

    图 21  电阻随脉冲电压的变化

    Fig. 21.  Change curve of the resistance as a function of pulse magnitude.

    图 22  GeTe薄膜温度随时间的变化

    Fig. 22.  Temperature change on the surface of GeTe film as a function of time.

    图 23  并联开关测试结果

    Fig. 23.  Measured results for the proposed parallel switch.

    表 1  不同衬底的GeTe薄膜方阻

    Table 1.  Sheet resistance of GeTe Films for different substrates.


    衬底
    类型
    溅射条件 退火条件 方阻/
    ($\Omega\cdot \square^{-1} $)
    1 SiO2 120 W, 10 mTorr 350 ℃, 30 min 67.8
    2 Al2O3 120 W, 10 mTorr 350 ℃, 30 min 66
    3 SiO2 80 W, 4 mTorr 350 ℃, 30 min 37.2
    4 Al2O3 80 W, 4 mTorr 350 ℃, 30 min 33.8
    5 SiO2 60 W, 3 mTorr 350 ℃, 30 min 36
    6 Al2O3 60 W, 3 mTorr 350 ℃, 30 min 30
    下载: 导出CSV
  • [1]

    Rangan S, Rappaport T S, Erkip E 2014 Proc. IEEE 102 366Google Scholar

    [2]

    Wu Z Y, Lu W, Bao X Y, Meng F B, Yang Z B, Sun Q, Zhao F Z, Wang Y T 2021 Int. J. Mod. Phys. B 35 15017Google Scholar

    [3]

    Sun P, Upadhyaya P, Jeong D, Jeong D H, Heo D, La Rue G S 2007 IEEE Microw. Wirel. Co. 17 352Google Scholar

    [4]

    Doan C H, Emami S, Niknejad A M, Brodersen R W 2005 IEEE J. Solid-State Circuits 40 144Google Scholar

    [5]

    Wolf R, Joseph A, Botula A, Slinkman J 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, USA, January 19–21, 2009 p1

    [6]

    Campbell C F, Dumka D C 2010 IEEE MTT-S International Microwave Symposium Anaheim, USA, May 23–28, 2010 p145

    [7]

    Daneshmand M, Mansour R R 2011 IEEE Microw. Mag. 12 92Google Scholar

    [8]

    Boles T, Brogle J, Hoag D, Curcio D 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011) Tel Aviv, Israel, November 7–9, 2011 p1

    [9]

    Jaffe M, Abou-Khalil M, Botula A, Ellis-Monaghan J, Gambino J, Gross J, He Z X, Joseph A, Phelps R, Shank S, Slinkman J, Wolf R 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, USA, January 26–28, 2015 p30

    [10]

    Stefanini R, Chatras M, Blondy P, Rebeiz G M 2011 IEEE MTT-S International Microwave Symposium Digest, Baltimore MD, USA, June 5–10, 2011 p1

    [11]

    Grant P, Denhoff M, Mansour R R 2004 Proceedings of the IEEE International Conference on MEMS, NANO and Smart Systems (ICMENS) Banff, Canada, August 25–27, 2004 p515

    [12]

    Tabata O, Tsuchiya T 2014 Reliability of MEMS: Testing of Materials and Devices (Hoboken: John Wiley & Sons) pp124–130

    [13]

    Pan K, Wang W, Shin E, Freeman K, Subramanyam G 2015 IEEE T. Electron Dev. 62 2959Google Scholar

    [14]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [15]

    Bahl S K, Chopra K L 1970 J. Appl. Phys. 41 2196Google Scholar

    [16]

    Raoux S, Cheng H Y, Munoz B, Jordan-Sweet J 2009 European Phase Change and Ovonic Science Symposium, 2009 p91

    [17]

    Raoux S, Ielmini D, Wuttig M, Karpov I 2012 MRS Bull. 37 118Google Scholar

    [18]

    Raoux S, Cheng H Y, Caldwell M A, Wong H S P 2009 Appl. Phys. Lett. 95 071910Google Scholar

    [19]

    Fantini P 2020 J. Phys. D Appl. Phys. 53 283002Google Scholar

    [20]

    Chua K, Shi L P, Zhao R, Lim K G, Chong T C, Schlesinger T E, Bain J A 2010 Appl. Phys. Lett. 97 183506Google Scholar

    [21]

    Wuttig M 2005 Nat. Mater. 4 265Google Scholar

    [22]

    Iwasaki H, Ide Y, Harigaya M, Kageyama Y, Fujimura I 1992 J. Appl. Phys. 31 461Google Scholar

    [23]

    Singh T, Mansour R R 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Ann Arbor, USA, July 16–18, 2018 p3

    [24]

    Bettoumi I, Gall N L, Blondy P 2022 IEEE Microw. Wirel. Co 32 52Google Scholar

    [25]

    Cruz L D L, Ivanov T, Birdwell A G, Weil J D, Kingkeo K, Zaghloul M 2023 IEEE Electron Device Lett. 70 4178Google Scholar

    [26]

    Charlet I, Guerber S, Naoui A, Charbonnier B, Dupré C, Lugo-Alvarez J, Hellion C, Allain M, Podevin F, Perret E 2024 IEEE Electron Device Lett. 45 500Google Scholar

    [27]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703Google Scholar

  • [1] 高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英. 限域结构热致变色相变环氧复合绝缘陷阱特性的机理研究. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241447
    [2] 高建, 李建英. 限域相变对热致变色环氧绝缘材料介电松弛特性的影响. 物理学报, 2023, 72(10): 107701. doi: 10.7498/aps.72.20230253
    [3] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性. 物理学报, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [4] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性. 物理学报, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [5] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 更正:分立式与分布式光纤传感关键技术研究进展[物理学报2017,66(7):070705]. 物理学报, 2017, 66(9): 099901. doi: 10.7498/aps.66.099901
    [6] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [7] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [8] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究. 物理学报, 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [9] 李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响. 物理学报, 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [10] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究. 物理学报, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [11] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [12] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [13] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [14] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应. 物理学报, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [15] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [16] 卢 肖, 吴传贵, 张万里, 李言荣. 射频溅射制备的BST薄膜介电击穿研究. 物理学报, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [17] 迟荣华, 吕可诚, 运 鹏, 李乙钢, 董孝义, 陈文钊, 杨光明, 刘兆兵. 分立式色散补偿拉曼放大器增益特性及非线性现象研究. 物理学报, 2004, 53(2): 456-460. doi: 10.7498/aps.53.456
    [18] 周 健, 荀 坤, 刘世勇, 沈德芳. MO磁光薄膜的光致局域热研究. 物理学报, 1999, 48(4): 620-627. doi: 10.7498/aps.48.620
    [19] 崔敬忠, 达道安, 姜万顺. VO2热致变色薄膜的结构和光电特性研究. 物理学报, 1998, 47(3): 454-460. doi: 10.7498/aps.47.454
    [20] 施一生, 赵特秀, 刘洪图, 王晓平. 射频溅射Pd薄膜的电阻率研究. 物理学报, 1990, 39(11): 1803-1810. doi: 10.7498/aps.39.1803
计量
  • 文章访问数:  901
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-21
  • 修回日期:  2024-08-28
  • 上网日期:  2024-09-03
  • 刊出日期:  2024-10-05

/

返回文章
返回