-
传统太赫兹超材料吸收器设计需多次试错调整,十分依赖设计人员的经验,设计时间成本高、效率低,而目前基于机器学习的设计方法或需要准备大量样本,或无法并行优化多个目标。为解决这一问题,本文提出一种基于多目标粒子群的几何参数优化方法,以吸收率和品质因子为设计目标寻找符合要求的结构参数和介质厚度,并以一个由四个角码型金属组成的中心对称结构的吸收器为例进行优化设计。仿真结果表明,多目标粒子群所快速获取的结构几何参数可以同时满足高吸收率和高品质因子两个设计目标,明显优于粒子群算法。通过该方法设计的吸收器在1.613THz的吸收率大于99%、品质因子为319.72,其传感灵敏度可达264.5GHz/RIU。相比于传统设计方法,此方法设计出的超材料吸收器可以实现高吸收率、高品质因子和高灵敏度,为超材料吸收器的设计提供了新的思路,具有广阔的应用前景。Metamaterials can freely control terahertz waves to obtain the desired electromagnetic characteristics by designing the geometry and direction of the unit structure, which is widely used in sensing, communication and stealth technology in radar. The traditional design of terahertz metamaterial absorber usually requires continuous structural adjustment and a large number of simulations to meet the expected requirements. The process is heavily dependent on the experience of researchers, and the physical modeling and simulation solution process is time-consuming and inefficient, which has greatly hindered the development of metamaterial absorbers. Therefore, deep learning has been used to predict the structural parameters or spectra of metamaterial absorbers due to its powerful learning ability. However, when designing a new structure, a large number of training samples need to be reprepared, which is time-consuming and not universal. Particle swarm optimization can quickly converge to the optimal solution through the sharing and cooperation of individual information in the group, without prior preparation. Therefore, this paper proposed a fast design method of terahertz metamaterial absorber based on multi-objective particle swarm optimization algorithm. Taking a new center symmetric absorber structure composed of four L as an example, the structure parameters are optimized to achieve fast automatic design of metamaterial absorber. The multi-objective particle swarm optimization takes the absorptivity and quality factor as independent targets to design the structure parameters of the absorber, realizes the dual-objective optimization of the absorber, and overcomes the shortcoming of the multi-objective conflict that PSO cannot solve. The optimally-designed absorber achieves perfect absorption at 1.613THz with a quality factor of up to 319.72 and a sensing sensitivity of 264.5GHz/RIU when used for refractive index sensing. In addition, the causes of absorption peaks are analyzed in detail using impedance matching, surface current, and electric field distribution. By studying the polarization characteristics of the absorber, it is found that it is not sensitive to polarization, which is more stable in practical application. In summary, the multi-objective particle swarm optimization algorithm can realize the design according to the demand, reduce the experience requirement of researchers in the design of metamaterial absorber, improve the design efficiency and performance, and have great application potential in the design of terahertz functional devices.
-
Keywords:
- Terahertz metamaterial absorber /
- Multi-objective optimization /
- Particle swarm optimization /
- Parameter optimization
-
[1] Cui Z J, Wang Y, Zhu D Y, Yue L S, Chen S G 2019 Chin. J. Lasers 46 0614023 (in Chinese) [崔子健,王玥,朱冬颖,岳莉莎,陈素果 2019 中国激光 46 0614023.]
[2] Jin J S, Ma J C, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 91 (in Chinese) [金嘉升,马成举,张垚,张跃斌,鲍士仟,李咪,李东明,刘洺,刘芊震,张贻歆 2023 物理学报 72 91]
[3] Nadège K, Fabrice L, Mathias F, Geoffroy L 2015 Nature 525 77.
[4] Meng T H, Hu D, Zhu Q F 2018 Opt. Commun. 415 151
[5] Jiang X Y 2021 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [江晓运 2021 博士学位论文(武汉:华中科技大学)]
[6] Pan X W, Zhao Y Q, Liang X L 2021 J. Optoelectron. Laser 32 680 (in Chinese) [潘学文,赵全友,梁晓琳 2021 光电子·激光 32 680]
[7] Amirhossein N-R, Pejman R 2022 Micro. Nanostruct. 163 107153
[8] Wang J C, Tu S, Chen T 2024 Physica E 155 115829
[9] Tu J J, Ma D. 2023 Acta Electron. Sinica 51 3262 (in Chinese) [涂建军,马丁 2023 电子学报 51 3262]
[10] Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326
[11] Huo Z Y, Zhang P Y, Ge M F, Li J, Tang T T, Shen J, Li C Y 2021 Nanomaterials 11 2672
[12] Ma J, Huang Y J, Pu M B, Xu D, Luo J, Guo Y H, Luo X G 2020 J. Phys. D 53 464002
[13] Xie Z H, Qu W W, Deng H, Li G L, Shang L P 2023 Acta Optica Sin 43 1316001 (in Chinese) [谢朝辉,屈薇薇,邓琥,李桂琳,尚丽平 2023 光学学报 43 1316001]
[14] Feng Q 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [江晓运 2022 博士学位论文(北京:北京科技大学)]
[15] Arora C, Pattnaik S S 2020 Evol. Intell 14 801
[16] Abolfazl M, Hamid R M, Abbas Z 2023 Photonics Nanostruct 53 101105
[17] Chen Y, Ding Z X, Zhang M, Li M J, Zhao M, Wang J K 2021 Appl. Opt 60 9200
[18] Han D, Ma Z Y, Wang J L, Wang X, Liu S Y 2022 Chin. J. Lasers 49 1714001 (in Chinese) [韩丁,马子寅,王俊林,岳莉莎,王鑫,刘苏雅拉图 2019 中国激光 49 1714001]
[19] Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput, 8 256
[20] Leng R, Ouyang A J, Liu Y M, Yuan L W, Wu Z Y 2020 Intern J Pattern Recognit Artif Intell 34 2059008
[21] Yang J P, Lu J T, Zhang S, Xu J C, Bi K 2024 Electron Compon. Mater. 43 176 (in Chinese) [杨佳蓬,逯景桐,张帅,岳莉莎,许建春,毕科 2024 电子元件与材料43 176]
[22] Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lv M, Zhang Y, Li Z.2022 Acta Phys. Sin 71 439 (in Chinese) [葛宏义,李丽,蒋玉英,李广明,王飞,吕明,张元,李智 2024 物理学报71 439]
[23] Cao R 2021 M.S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹瑞 2021 硕士学位论文(南京:南京邮电大学)]
[24] Lin Q Z, Li J Q, Du Z H, Chen J Y, Zhong M 2015 Eur. J. Oper. Res. 247 732
[25] Zhang J, Cho H, Mago P J, Zhang H G, Yang F B 2019 J. Therm. Sci 28 1221
[26] Xue B, Zhang M J, Browne W. N 2013 IEEE Trans Cybern 43 1656
[27] Wu X G, Liu Z Q, Tian L T, Ding D, Yang S L 2014 Power Syst. Technol 38 3405 (in Chinese) [吴小刚,刘宗歧,田立亭,丁冬,杨水丽 2014 电网技术 38 3405]
[28] Liang Z K 2022 M.S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [梁泽坤 2022 硕士学位论文(成都:电子科技大学)]
[29] Xie Z H 2024 M.S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [谢朝辉 2024 硕士学位论文(绵阳:西南科技大学)]
计量
- 文章访问数: 90
- PDF下载量: 1
- 被引次数: 0