搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于MOPSO的太赫兹超材料吸收器快速优化方法

王玉蓉 屈薇薇 李桂琳 邓琥 尚丽平

引用本文:
Citation:

一种基于MOPSO的太赫兹超材料吸收器快速优化方法

王玉蓉, 屈薇薇, 李桂琳, 邓琥, 尚丽平

An optimization method for terahertz metamaterial absorber based on MOPSO

Wang Yurang, Qu Weiwei, Li Guilin, Deng Hu, Shang Liping
PDF
导出引用
  • 传统太赫兹超材料吸收器设计需多次试错调整,十分依赖设计人员的经验,设计时间成本高、效率低,而目前基于机器学习的设计方法或需要准备大量样本,或无法并行优化多个目标。为解决这一问题,本文提出一种基于多目标粒子群的几何参数优化方法,以吸收率和品质因子为设计目标寻找符合要求的结构参数和介质厚度,并以一个由四个角码型金属组成的中心对称结构的吸收器为例进行优化设计。仿真结果表明,多目标粒子群所快速获取的结构几何参数可以同时满足高吸收率和高品质因子两个设计目标,明显优于粒子群算法。通过该方法设计的吸收器在1.613THz的吸收率大于99%、品质因子为319.72,其传感灵敏度可达264.5GHz/RIU。相比于传统设计方法,此方法设计出的超材料吸收器可以实现高吸收率、高品质因子和高灵敏度,为超材料吸收器的设计提供了新的思路,具有广阔的应用前景。
    Metamaterials can freely control terahertz waves to obtain the desired electromagnetic characteristics by designing the geometry and direction of the unit structure, which is widely used in sensing, communication and stealth technology in radar. The traditional design of terahertz metamaterial absorber usually requires continuous structural adjustment and a large number of simulations to meet the expected requirements. The process is heavily dependent on the experience of researchers, and the physical modeling and simulation solution process is time-consuming and inefficient, which has greatly hindered the development of metamaterial absorbers. Therefore, deep learning has been used to predict the structural parameters or spectra of metamaterial absorbers due to its powerful learning ability. However, when designing a new structure, a large number of training samples need to be reprepared, which is time-consuming and not universal. Particle swarm optimization can quickly converge to the optimal solution through the sharing and cooperation of individual information in the group, without prior preparation. Therefore, this paper proposed a fast design method of terahertz metamaterial absorber based on multi-objective particle swarm optimization algorithm. Taking a new center symmetric absorber structure composed of four L as an example, the structure parameters are optimized to achieve fast automatic design of metamaterial absorber. The multi-objective particle swarm optimization takes the absorptivity and quality factor as independent targets to design the structure parameters of the absorber, realizes the dual-objective optimization of the absorber, and overcomes the shortcoming of the multi-objective conflict that PSO cannot solve. The optimally-designed absorber achieves perfect absorption at 1.613THz with a quality factor of up to 319.72 and a sensing sensitivity of 264.5GHz/RIU when used for refractive index sensing. In addition, the causes of absorption peaks are analyzed in detail using impedance matching, surface current, and electric field distribution. By studying the polarization characteristics of the absorber, it is found that it is not sensitive to polarization, which is more stable in practical application. In summary, the multi-objective particle swarm optimization algorithm can realize the design according to the demand, reduce the experience requirement of researchers in the design of metamaterial absorber, improve the design efficiency and performance, and have great application potential in the design of terahertz functional devices.
  • [1]

    Cui Z J, Wang Y, Zhu D Y, Yue L S, Chen S G 2019 Chin. J. Lasers 46 0614023 (in Chinese) [崔子健,王玥,朱冬颖,岳莉莎,陈素果 2019 中国激光 46 0614023.]

    [2]

    Jin J S, Ma J C, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 91 (in Chinese) [金嘉升,马成举,张垚,张跃斌,鲍士仟,李咪,李东明,刘洺,刘芊震,张贻歆 2023 物理学报 72 91]

    [3]

    Nadège K, Fabrice L, Mathias F, Geoffroy L 2015 Nature 525 77.

    [4]

    Meng T H, Hu D, Zhu Q F 2018 Opt. Commun. 415 151

    [5]

    Jiang X Y 2021 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [江晓运 2021 博士学位论文(武汉:华中科技大学)]

    [6]

    Pan X W, Zhao Y Q, Liang X L 2021 J. Optoelectron. Laser 32 680 (in Chinese) [潘学文,赵全友,梁晓琳 2021 光电子·激光 32 680]

    [7]

    Amirhossein N-R, Pejman R 2022 Micro. Nanostruct. 163 107153

    [8]

    Wang J C, Tu S, Chen T 2024 Physica E 155 115829

    [9]

    Tu J J, Ma D. 2023 Acta Electron. Sinica 51 3262 (in Chinese) [涂建军,马丁 2023 电子学报 51 3262]

    [10]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326

    [11]

    Huo Z Y, Zhang P Y, Ge M F, Li J, Tang T T, Shen J, Li C Y 2021 Nanomaterials 11 2672

    [12]

    Ma J, Huang Y J, Pu M B, Xu D, Luo J, Guo Y H, Luo X G 2020 J. Phys. D 53 464002

    [13]

    Xie Z H, Qu W W, Deng H, Li G L, Shang L P 2023 Acta Optica Sin 43 1316001 (in Chinese) [谢朝辉,屈薇薇,邓琥,李桂琳,尚丽平 2023 光学学报 43 1316001]

    [14]

    Feng Q 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [江晓运 2022 博士学位论文(北京:北京科技大学)]

    [15]

    Arora C, Pattnaik S S 2020 Evol. Intell 14 801

    [16]

    Abolfazl M, Hamid R M, Abbas Z 2023 Photonics Nanostruct 53 101105

    [17]

    Chen Y, Ding Z X, Zhang M, Li M J, Zhao M, Wang J K 2021 Appl. Opt 60 9200

    [18]

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y 2022 Chin. J. Lasers 49 1714001 (in Chinese) [韩丁,马子寅,王俊林,岳莉莎,王鑫,刘苏雅拉图 2019 中国激光 49 1714001]

    [19]

    Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput, 8 256

    [20]

    Leng R, Ouyang A J, Liu Y M, Yuan L W, Wu Z Y 2020 Intern J Pattern Recognit Artif Intell 34 2059008

    [21]

    Yang J P, Lu J T, Zhang S, Xu J C, Bi K 2024 Electron Compon. Mater. 43 176 (in Chinese) [杨佳蓬,逯景桐,张帅,岳莉莎,许建春,毕科 2024 电子元件与材料43 176]

    [22]

    Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lv M, Zhang Y, Li Z.2022 Acta Phys. Sin 71 439 (in Chinese) [葛宏义,李丽,蒋玉英,李广明,王飞,吕明,张元,李智 2024 物理学报71 439]

    [23]

    Cao R 2021 M.S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹瑞 2021 硕士学位论文(南京:南京邮电大学)]

    [24]

    Lin Q Z, Li J Q, Du Z H, Chen J Y, Zhong M 2015 Eur. J. Oper. Res. 247 732

    [25]

    Zhang J, Cho H, Mago P J, Zhang H G, Yang F B 2019 J. Therm. Sci 28 1221

    [26]

    Xue B, Zhang M J, Browne W. N 2013 IEEE Trans Cybern 43 1656

    [27]

    Wu X G, Liu Z Q, Tian L T, Ding D, Yang S L 2014 Power Syst. Technol 38 3405 (in Chinese) [吴小刚,刘宗歧,田立亭,丁冬,杨水丽 2014 电网技术 38 3405]

    [28]

    Liang Z K 2022 M.S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [梁泽坤 2022 硕士学位论文(成都:电子科技大学)]

    [29]

    Xie Z H 2024 M.S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [谢朝辉 2024 硕士学位论文(绵阳:西南科技大学)]

  • [1] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化. 物理学报, doi: 10.7498/aps.72.20230160
    [2] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法. 物理学报, doi: 10.7498/aps.72.20230179
    [3] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析. 物理学报, doi: 10.7498/aps.71.20212223
    [4] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计. 物理学报, doi: 10.7498/aps.71.20220898
    [5] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, doi: 10.7498/aps.70.20201034
    [6] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, doi: 10.7498/aps.70.20201768
    [7] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, doi: 10.7498/aps.64.040506
    [8] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, doi: 10.7498/aps.63.028105
    [9] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析. 物理学报, doi: 10.7498/aps.63.110205
    [10] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, doi: 10.7498/aps.63.068801
    [11] 陈涵瀛, 高璞珍, 谭思超, 付学宽. 自然循环流动不稳定性的多目标优化极限学习机预测方法. 物理学报, doi: 10.7498/aps.63.200505
    [12] 董建军, 邓博, 曹柱荣, 江少恩. 多目标优化推断内爆芯部温度和密度空间分布. 物理学报, doi: 10.7498/aps.63.125209
    [13] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, doi: 10.7498/aps.63.034205
    [14] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究. 物理学报, doi: 10.7498/aps.62.193601
    [15] 郑仕链, 杨小牛. 绿色认知无线电自适应参数调整. 物理学报, doi: 10.7498/aps.61.148402
    [16] 龙文, 焦建军, 龙祖强. 基于PSO优化LSSVM的未知模型混沌系统控制. 物理学报, doi: 10.7498/aps.60.110506
    [17] 李红祺, 郭维栋, 孙国栋, 张耀存. 条件非线性最优扰动方法在陆面过程模式参数优化中的扩展应用初探. 物理学报, doi: 10.7498/aps.60.019201
    [18] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎. 物理学报, doi: 10.7498/aps.58.5118
    [19] 王校锋, 薛红军, 司守奎, 姚跃亭. 基于粒子群算法和OGY方法的混沌系统混合控制. 物理学报, doi: 10.7498/aps.58.3729
    [20] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, doi: 10.7498/aps.57.3519
计量
  • 文章访问数:  90
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-13

/

返回文章
返回