搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁偶极子阵列模型的适用性研究与优化分析

刘芙妍 颜冰

引用本文:
Citation:

磁偶极子阵列模型的适用性研究与优化分析

刘芙妍, 颜冰

Applicability and optimization analysis of magnetic dipole array model

Liu Fu-Yan, Yan Bing
PDF
HTML
导出引用
  • 随着我国水下探测、通信技术的发展, 传统的磁性测量模型已无法满足高精度、高效率建模的需要. 本文从舰船磁场积分模型出发, 综合分析模型离散化为磁偶极子阵列模型产生的复化中矩形, 以及Gauss-Legendre积分余项分析过程引起的离散误差、算法误差, 模型简化产生的拟合误差、模型误差等, 对模型适用性条件进行分析; 同时, 以建模精度和计算复杂度为目标构造多目标优化函数, 通过NSGA-II算法对多目标函数进行求解, 得到使精度、复杂度较为均衡的最优解集, 提出了不同精度、复杂度需求下的选择规则. 为了保证结果的有效性, 在舰船磁场混合模型的基础上利用数值实验对模型进行验证, 充分考虑模型拟合误差, 通过对磁性均匀、磁性不均匀潜艇的仿真分析得到模型达到适用范围时距离与磁偶极子数目的相关关系; 在保证模型适用的条件下, 基于NSGA-II算法的多目标优化过程所得结果运算效率、精度高, 具有很好的工程应用价值.
    With the development of underwater detection and communication technology, the traditional magnetic measurement model cannot meet the requirements for high precision and high efficiency modeling. In order to solve this problem, according to the integral model of ship magnetic field, we comprehensively analyze the discretization error caused by the composite middle rectangular and Gauss-Legendre integral remainders generated by discretizing the integral model into the magnetic dipole array model, the algorithm error, the fitting error caused by the model simplification, the model error, etc. and we also use these research results to analyze the model applicability conditions. Then based on the correlation between model error and parameters as well as accuracy and computational complexity, the multi-objective optimization problem is constructed. The NSGA-II algorithm is used to solve the multi-objective function, and the optimal solution set with balanced accuracy and complexity is obtained. The selection rules under the different requirements for accuracy and complexity are proposed. In order to ensure the effectiveness of the results, the model is simulated by using the actual submarine data on the basis of the hybrid model of ship magnetic field. The relationship between the distance to reach the applicable range of the model and the number of magnetic dipoles is obtained through the simulation analysis of the submarines with uniform and nonuniform magnetic field, and the simulation results are compared with the existing research results to ensure the effectiveness of the simulation results. At the same time, under the condition of ensuring the applicability of the model, the results obtained in the multi-objective optimization process based on NSGA-II algorithm are of high computational efficiency and accuracy. Therefore, this method has good engineering application value.
      通信作者: 颜冰, yanbing19@nudt.edu.cn
    • 基金项目: 国防基础科研计划(批准号: JCKY2020550C011)、国家自然科学基金(批准号: 42176197)和水声对抗技术国防科技重点实验室基金(批准号: 6412214200403)资助的课题.
      Corresponding author: Yan Bing, yanbing19@nudt.edu.cn
    • Funds: Project supported by the National Defense Basic Research Program of China (Grant No. JCKY2020550C011), the National Natural Science Foundation of China (Grant No. 42176197), and the Foundation of Key Laboratory of National Defense Technology for Underwater Acoustic Countermeasure Technology, China (Grant No. 6412214200403).
    [1]

    Jin H H, Guo J, Wang H B, Zhuang Z H, Qin J, Wang T L 2020 IEEE Trans. Geosci. Remote Sens. 58 5944Google Scholar

    [2]

    Cameron D, Luca M, Ferruccio R 2018 Appl. Opt. 57 2346Google Scholar

    [3]

    Jin H H, Zhuang Z H, Wang H B 2018 IEEE Geosci. Remote Sens. Lett. 15 1294Google Scholar

    [4]

    戴忠华, 周穗华, 张晓兵 2021 物理学报 70 164101Google Scholar

    Dai Z H, Zhou S H, Zhang X B 2021 Acta Phys. Sin. 70 164101Google Scholar

    [5]

    Caruso M J, Smith C H, Bratland T, Schneider R 1998 Sensors 15 1

    [6]

    Nelson J B, Richards T C https://cradpdf.drdc-rddc.gc.ca/ PDFS/unc80/p530746.pdf [2021-12-22]

    [7]

    张昌达 2006 工程地球物理学报 3 354Google Scholar

    Zhang C D 2006 Chin J. Eng. Geophys. 3 354Google Scholar

    [8]

    吴招才, 刘天佑 2008 地质科技情况报 27 107

    Wu Z C, Liu T Y 2008 Geol. Sci. Technol. Inf. 27 107

    [9]

    胡祥超 2005 硕士学位论文 (长沙: 中国人民解放军国防科技大学)

    Hu C X 2005 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [10]

    黄玉 2011博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Huang Y 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [11]

    Yoshii T 1982 US Patent 6 083 641

    [12]

    刘少丽, 杨向东, 吴聊, 陈恳 2011 机械设计与制造 6 1

    Liu S L, Yang X D, Wu L, Chen K 2011 Mchnr. Dgn. Mfr. 6 1

    [13]

    金煌煌, 庄志洪, 付梦印, 郭健, 王宏波 2021 系统工程与电子技术 43 2066Google Scholar

    Jin H H, Zhang Z H, Fu M Y, Guo J, Wang H B 2021 J. Syst. Eng. Electron. 43 2066Google Scholar

    [14]

    Lutkenhoner B 1998 IEEE Trans. Biomed. Eng. 45 572Google Scholar

    [15]

    吴旭东, 侯文生, 郑小林, 彭承琳 2008 仪器仪表学报 29 326Google Scholar

    Wu X D, Hou W S, Zheng X L, Peng C L 2008 Chin. J. Sci. Inst. 29 326Google Scholar

    [16]

    牛龙飞, 李斌, 张静 2009 计算机仿真 26 12Google Scholar

    Niu L F, Lin B, Zhang J 2009 Comput. Sim. 26 12Google Scholar

    [17]

    Lucas C E, Richards T C 2015 A Novel Technique for Modelling Ship Magnetic Signatures Philadelphia, Pennsylvania, USA, July 18, 2015 p1

    [18]

    Nilsson M 2016 Modelling of Civilian Ships’ Ferromagnetic Signatures (Norwegian: FFI-rapport) pp13–19

    [19]

    戴忠华, 周穗华, 单珊 2017 水雷战与舰船防护 25 10

    Dai Z H, Zhou S H, Dan S 2017 Mine Warfare and Ship Self-Defence 25 10

    [20]

    樊明武, 颜威利 1988 电磁场积分方程法 (北京: 机械工业出版社) 第65页

    Fan M W, Yan W L 1988 Magnetic Field Integral Equation (Beijing: Press of Machinery Industry) p65 (in Chinese)

    [21]

    盛剑霓 1991工程电磁场数值分析(西安: 西安交通大学出版社) 第8页

    Sheng J N 1991 Numerical Analysis of Engineering Electromagnetic Field (Xi’an: Press of Xi’an Jiaotong University) p8 (in Chinese)

    [22]

    Maset S J 2021 Numer. Math. 29 119Google Scholar

    [23]

    周耀忠, 张国友 2004 舰船磁场分析计算(北京: 国防工业出版社) 第65—89页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp65–89 (in Chinese)

    [24]

    林春生, 向前, 龚沈光 2005 兵工学报 26 192Google Scholar

    Lin C S, Xiang Q, Gong S G 2005 Acta Armamentarii 26 192Google Scholar

    [25]

    林春生 1996 水雷与战舰防护 4 54

    Lin C S 1996 Mine Warfare and Ship Self-Defence 4 54

    [26]

    裘益钟 1980 上海交通大学学报 18 53

    Qiu Y Z 1980 J. Shanghai Jiaotong Univ. 18 53

    [27]

    John J H 2007 Modeling a Ship’s Ferromagnetic Signatures (USA: Morgan & Claypool) pp17–43

    [28]

    Hua C C, Huang C, Zuo Y, Wang W Z, Yang J X 2020 6th Global Electromagnetic Compatibility Conference Xi’an, China, October 20–23, 2020 p1

    [29]

    Shi L, Chen Y M 2017 International Conference on Information Science & Control Engineering Changsha, China, July 21–23, 2017 p55

    [30]

    Qin M F 2009 International Conference on Intelligent Computation Technology & Automation Changsha, China, October 10–11, 2009 p198

    [31]

    陶文华, 刘洪涛 2016 计算机工程 42 219Google Scholar

    Tao W H, Liu H T 2016 Comput. Eng. 42 219Google Scholar

    [32]

    陈志旺, 陈林, 白锌, 杨七, 赵方亮 2015 控制与决策 30 865

    Chen Z W, Chen L, Bai X, Yang Q, Zhao F L 2015 Contral. Decis. 30 865

    [33]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182Google Scholar

    [34]

    Bandyopadhyay S, Bhattacharya R 2012 NSGA-II Based Multi-objective Evolutionary Algorithm for a Multi-objective Supply Chain Problem Nagapattinam, India, March 30–31, 2012 p126

  • 图 1  单磁偶极子条件下相对误差随$\eta $的变化

    Fig. 1.  Relative error as a function of $\eta $ for a magnetic dipole.

    图 2  基于复化中矩形法模型误差随距离及磁偶极子数目的变化规律

    Fig. 2.  Variation of model error with distance and the number of magnetic dipoles based on composite middle rectangular method.

    图 3  基于Gauss-Legendre法模型误差随距离及磁偶极子数目的变化规律

    Fig. 3.  Variation of model error with distance and the number of magnetic dipoles based on Gauss-Legendre method.

    图 4  潜艇模型

    Fig. 4.  Submarine model.

    图 5  r = 224时选取的均匀采样点

    Fig. 5.  Uniform sampling points selected when r = 224.

    图 6  磁性均匀时模型相对误差变化趋势 (a)磁偶极子数目、距离对模型误差影响的三维柱状图; (b) 磁偶极子数目、距离对模型误差影响的等高线剖面图

    Fig. 6.  Trend of relative error of the model when the magnetic is uniform: (a) Three dimensional histogram of effects of number and distance of magnetic dipoles on model error; (b) contour of effects of number and distance of magnetic dipoles on model error.

    图 7  距离为224时模型相对误差随潜艇磁性差异的变化趋势 (a)潜艇磁性差异对模型相对误差影响的折线图; (b) 潜艇磁性差异对模型相对误差影响的等高线图

    Fig. 7.  Variation trend of model relative error with submarine magnetic difference when r = 224: (a) Line graph of the effect of submarine magnetic differences on the relative error of the model; (b) Contour plot of the effect of submarine magnetic differences on the relative error of the model

    图 8  a1 = 40000时模型相对误差的变化趋势 (a)磁偶极子数目、距离对模型误差影响的三维柱状图; (b) 磁偶极子数目、距离对模型误差的影响等高线剖面图

    Fig. 8.  Tendency of the relative error of the model when a1 = 40000: (a) Three dimensional histogram of the effect of the number and distance of magnetic dipoles on the model error; (b) contour map of effects of the number and distance of magnetic dipoles on model errors.

    图 9  (a) r = 234 和(b) r = 124时Pareto前沿

    Fig. 9.  Pareto front for (a) r = 234 and (b) r = 124.

    表 1  磁性均匀情况下, 达到建模有效范围的磁偶极子数目及距离

    Table 1.  Number and distance of magnetic dipoles reaching the modeling effective range when the magnetic is uniform.

    距离/m倍数磁偶极
    子数目
    距离/m倍数磁偶极
    子数目
    r = 841.0503 r = 1441.8002
    r = 941.1753r = 1541.9252
    r = 1041.3002r = 1642.0502
    r = 1141.4252r = 1742.1752
    r = 1241.5502r = 1842.3001
    r = 1341.6752r = 1942.4251
    下载: 导出CSV

    表 2  磁性不均匀情况下, 达到建模有效范围的磁偶极子数目及距离

    Table 2.  Number and distance of magnetic dipoles reaching modeling effective range when the magnetic is nonuniform.

    距离/m倍数磁偶极
    子数目
    距离/m倍数磁偶极
    子数目
    r = 841.0506 r = 1642.0505
    r = 941.1755r = 1742.1755
    r = 1041.3005r = 1842.3005
    r = 1141.4255r = 1942.4255
    r = 1241.5505r = 2042.5505
    r = 1341.6755r = 2142.6755
    r = 1441.8005r = 2242.8005
    r = 1541.9255r = 2342.9255
    下载: 导出CSV

    表 3  平衡点附近磁偶极子数目及相对误差值

    Table 3.  Number of magnetic dipoles near equilibrium point and relative error.

    距离倍数偶极子数目相对误差 距离倍数偶极子数目相对误差
    r = 941.175100.90% r = 1842.30060.39%
    r = 1041.30090.77%r = 1942.42560.32%
    r = 1141.42580.71%r = 2042.55060.32%
    r = 1241.55080.60%r = 2142.67560.30%
    r = 1341.67580.52%r = 2242.80060.27%
    r = 1441.80070.52%r = 2342.92550.30%
    r = 1541.92570.46%r = 3003.75050.18%
    r = 1642.05070.41%r = 4005.00050.11%
    r = 1742.17570.36%r = 5006.25050.085%
    下载: 导出CSV
  • [1]

    Jin H H, Guo J, Wang H B, Zhuang Z H, Qin J, Wang T L 2020 IEEE Trans. Geosci. Remote Sens. 58 5944Google Scholar

    [2]

    Cameron D, Luca M, Ferruccio R 2018 Appl. Opt. 57 2346Google Scholar

    [3]

    Jin H H, Zhuang Z H, Wang H B 2018 IEEE Geosci. Remote Sens. Lett. 15 1294Google Scholar

    [4]

    戴忠华, 周穗华, 张晓兵 2021 物理学报 70 164101Google Scholar

    Dai Z H, Zhou S H, Zhang X B 2021 Acta Phys. Sin. 70 164101Google Scholar

    [5]

    Caruso M J, Smith C H, Bratland T, Schneider R 1998 Sensors 15 1

    [6]

    Nelson J B, Richards T C https://cradpdf.drdc-rddc.gc.ca/ PDFS/unc80/p530746.pdf [2021-12-22]

    [7]

    张昌达 2006 工程地球物理学报 3 354Google Scholar

    Zhang C D 2006 Chin J. Eng. Geophys. 3 354Google Scholar

    [8]

    吴招才, 刘天佑 2008 地质科技情况报 27 107

    Wu Z C, Liu T Y 2008 Geol. Sci. Technol. Inf. 27 107

    [9]

    胡祥超 2005 硕士学位论文 (长沙: 中国人民解放军国防科技大学)

    Hu C X 2005 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [10]

    黄玉 2011博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Huang Y 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [11]

    Yoshii T 1982 US Patent 6 083 641

    [12]

    刘少丽, 杨向东, 吴聊, 陈恳 2011 机械设计与制造 6 1

    Liu S L, Yang X D, Wu L, Chen K 2011 Mchnr. Dgn. Mfr. 6 1

    [13]

    金煌煌, 庄志洪, 付梦印, 郭健, 王宏波 2021 系统工程与电子技术 43 2066Google Scholar

    Jin H H, Zhang Z H, Fu M Y, Guo J, Wang H B 2021 J. Syst. Eng. Electron. 43 2066Google Scholar

    [14]

    Lutkenhoner B 1998 IEEE Trans. Biomed. Eng. 45 572Google Scholar

    [15]

    吴旭东, 侯文生, 郑小林, 彭承琳 2008 仪器仪表学报 29 326Google Scholar

    Wu X D, Hou W S, Zheng X L, Peng C L 2008 Chin. J. Sci. Inst. 29 326Google Scholar

    [16]

    牛龙飞, 李斌, 张静 2009 计算机仿真 26 12Google Scholar

    Niu L F, Lin B, Zhang J 2009 Comput. Sim. 26 12Google Scholar

    [17]

    Lucas C E, Richards T C 2015 A Novel Technique for Modelling Ship Magnetic Signatures Philadelphia, Pennsylvania, USA, July 18, 2015 p1

    [18]

    Nilsson M 2016 Modelling of Civilian Ships’ Ferromagnetic Signatures (Norwegian: FFI-rapport) pp13–19

    [19]

    戴忠华, 周穗华, 单珊 2017 水雷战与舰船防护 25 10

    Dai Z H, Zhou S H, Dan S 2017 Mine Warfare and Ship Self-Defence 25 10

    [20]

    樊明武, 颜威利 1988 电磁场积分方程法 (北京: 机械工业出版社) 第65页

    Fan M W, Yan W L 1988 Magnetic Field Integral Equation (Beijing: Press of Machinery Industry) p65 (in Chinese)

    [21]

    盛剑霓 1991工程电磁场数值分析(西安: 西安交通大学出版社) 第8页

    Sheng J N 1991 Numerical Analysis of Engineering Electromagnetic Field (Xi’an: Press of Xi’an Jiaotong University) p8 (in Chinese)

    [22]

    Maset S J 2021 Numer. Math. 29 119Google Scholar

    [23]

    周耀忠, 张国友 2004 舰船磁场分析计算(北京: 国防工业出版社) 第65—89页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp65–89 (in Chinese)

    [24]

    林春生, 向前, 龚沈光 2005 兵工学报 26 192Google Scholar

    Lin C S, Xiang Q, Gong S G 2005 Acta Armamentarii 26 192Google Scholar

    [25]

    林春生 1996 水雷与战舰防护 4 54

    Lin C S 1996 Mine Warfare and Ship Self-Defence 4 54

    [26]

    裘益钟 1980 上海交通大学学报 18 53

    Qiu Y Z 1980 J. Shanghai Jiaotong Univ. 18 53

    [27]

    John J H 2007 Modeling a Ship’s Ferromagnetic Signatures (USA: Morgan & Claypool) pp17–43

    [28]

    Hua C C, Huang C, Zuo Y, Wang W Z, Yang J X 2020 6th Global Electromagnetic Compatibility Conference Xi’an, China, October 20–23, 2020 p1

    [29]

    Shi L, Chen Y M 2017 International Conference on Information Science & Control Engineering Changsha, China, July 21–23, 2017 p55

    [30]

    Qin M F 2009 International Conference on Intelligent Computation Technology & Automation Changsha, China, October 10–11, 2009 p198

    [31]

    陶文华, 刘洪涛 2016 计算机工程 42 219Google Scholar

    Tao W H, Liu H T 2016 Comput. Eng. 42 219Google Scholar

    [32]

    陈志旺, 陈林, 白锌, 杨七, 赵方亮 2015 控制与决策 30 865

    Chen Z W, Chen L, Bai X, Yang Q, Zhao F L 2015 Contral. Decis. 30 865

    [33]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182Google Scholar

    [34]

    Bandyopadhyay S, Bhattacharya R 2012 NSGA-II Based Multi-objective Evolutionary Algorithm for a Multi-objective Supply Chain Problem Nagapattinam, India, March 30–31, 2012 p126

  • [1] 张知原, 李冰. 基于时间反演的局域空间多目标均匀恒定长时无线输能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211231
    [2] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [3] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [4] 潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇. 基于Pareto优化理论的多目标超椭梯度线圈设计. 物理学报, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [5] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法. 物理学报, 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [6] 臧锐, 王秉中, 丁帅, 龚志双. 基于反演场扩散消除的时间反演多目标成像技术. 物理学报, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [7] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究. 物理学报, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [8] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [9] 曹钟, 杜平安, 聂宝林, 任丹, 张其道. 基于磁偶极子阵列的印制电路板干扰源等效建模方法. 物理学报, 2014, 63(12): 124102. doi: 10.7498/aps.63.124102
    [10] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配. 物理学报, 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [11] 陈涵瀛, 高璞珍, 谭思超, 付学宽. 自然循环流动不稳定性的多目标优化极限学习机预测方法. 物理学报, 2014, 63(20): 200505. doi: 10.7498/aps.63.200505
    [12] 董建军, 邓博, 曹柱荣, 江少恩. 多目标优化推断内爆芯部温度和密度空间分布. 物理学报, 2014, 63(12): 125209. doi: 10.7498/aps.63.125209
    [13] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题. 物理学报, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [14] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配. 物理学报, 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
    [15] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型. 物理学报, 2010, 59(7): 4837-4842. doi: 10.7498/aps.59.4837
    [16] 叶红霞, 金亚秋. 跨界面目标电磁散射Sommerfeld积分的双重广义函数束拟合离散复镜像方法. 物理学报, 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [17] 郭成豹, 肖昌汉, 刘大明. 基于积分方程法和奇异值分解的磁性目标磁场延拓技术研究. 物理学报, 2008, 57(7): 4182-4188. doi: 10.7498/aps.57.4182
    [18] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [19] 朱红毅, 李军, 罗斌. 真实头模型中的多电流偶极子脑磁源定位. 物理学报, 2002, 51(10): 2393-2398. doi: 10.7498/aps.51.2393
    [20] 申金媛, 刘, 常胜江, 贾 佳, 张文伟, 张延, 母国光. 基于径向基函数的多目标旋转不变分类及其光电实现. 物理学报, 1998, 47(12): 1968-1975. doi: 10.7498/aps.47.1968
计量
  • 文章访问数:  5472
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-02-22
  • 上网日期:  2022-06-10
  • 刊出日期:  2022-06-20

/

返回文章
返回