搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然循环流动不稳定性的多目标优化极限学习机预测方法

陈涵瀛 高璞珍 谭思超 付学宽

引用本文:
Citation:

自然循环流动不稳定性的多目标优化极限学习机预测方法

陈涵瀛, 高璞珍, 谭思超, 付学宽

Prediction method of flow instability based on multi-objective optimized extreme learning machine

Chen Han-Ying, Gao Pu-Zhen, Tan Si-Chao, Fu Xue-Kuan
PDF
导出引用
  • 极限学习机是近年来提出的一种前向单隐层神经网络训练算法,具有训练速度快、不会陷入局部最优等优点,但其性能会受到随机选取的输入权值和阈值的影响. 针对这一问题,提出一种基于多目标优化的改进极限学习机,将训练误差和输出层权值的均方最小化同时作为优化目标,采用带精英策略的快速非支配排序遗传算法对极限学习机的输入层到隐层的权值和阈值进行优化. 将该算法应用于摇摆工况下自然循环系统不规则复合型流量脉动的多步滚动预测,分析了训练误差和输出层权值对不同步长预测效果的影响. 仿真结果表明,优化极限学习机预测误差可以用较小的网络规模获得很好的泛化能力. 为流动不稳定性的实时预测提供了一种准确度较高的途径,其预测结果可以作为核动力系统操作员的参考.
    Extreme learning machine (ELM) is a recently proposed learning algorithm for single-hidden-layer feedforward neural networks, which has a fast learning speed while avoiding the problem of local optimal solution. However, the performance of ELM may be affected due to the random determination of the input weights and hidden biases. In this paper, a multi-objective optimized extreme learning machine (MO-ELM) is proposed to solve this problem. The algorithm uses the no-dominated sorting genetic algorithm II algorithm to select input weights and hidden biases. Both the learning errors and the mean square value of output weights are used as optimization objects. The MO-ELM algorithm is used in the multi-step forecast of irregular complex flow oscillations of natural circulation system in rolling motion, and the influences of learning errors and output weights on forecast results are analyzed. Experimental results show that MO-ELM can achieve good generalization performance with much more compact networks and provide a relatively accurate forecast method of flow rate, and the forecast results can be used as reference to nuclear power system operators.
    • 基金项目: 黑龙江省留学归国人员基金(批准号:LC2011C18)、黑龙江省青年学术骨干 支持计划(批准号:1254G017)和哈尔滨工程大学核安全与仿真技术国防 重点学科实验室基金(批准号:HEUFN1305)资助的课题.
    • Funds: Project supported by the Scientific Research Foundation of Heilongjiang Province for Returned Overseas Chinese Scholars, China (Grant No. LC2011C18), the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1254G017), and the Foundation of Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, China (Grant No. HEUFN1305).
    [1]

    Huang G B, Zhu Q Y, Siew C K 2004 Proceedings of the International Joint Conference on Neural Networks Budapest, Hungary, July 25-29, 2004 p985

    [2]

    Li M B, Huang G B, Saratchandran P, Sundararajan N 2005 Neurocomputing 68 306

    [3]

    Rong H J, Ong Y S, Tan A H, Zhu Z 2008 Neurocomputing 72 359

    [4]

    Miche Y, van Heeswijk M, Bas P, Simula O, Lendasse A 2011 Neurocomputing 74 2413

    [5]

    Feng G, Huang G B, Lin Q, Gay R 2009 IEEE Trans. Neural Networ. 20 1352

    [6]

    Cao J, Lin Z, Huang G B 2010 Neurocomputing 73 1405

    [7]

    Cao J, Lin Z, Huang G B 2011 Neural Process. Lett. 33 251

    [8]

    Javed K, Gouriveau R, Zerhouni N 2014 Neurocomputing 123 299

    [9]

    Gao G Y, Jiang G P 2012 Acta Phys. Sin. 61 040506 (in Chinese) [高光勇, 蒋国平 2012 物理学报 61 040506]

    [10]

    Bhat A U, Merchant S S, Bhagwat S S 2008 Ind. Eeg. Chem. Res. 47 920

    [11]

    Zhu Q Y, Qin A K, Suganthan P N, Huang G B 2005 Pattern Rrcogn. 38 1759

    [12]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182

    [13]

    Huang B, Buckley B, Kechadi T M 2010 Expert Syst. Appl. 37 3638

    [14]

    Ak R, Li Y, Vitelli V, Zio E, Droguett E L, Jacinto C M C 2013 Expert Syst. Appl. 40 1205

    [15]

    He B Y, Li H Y, Zhang B 2013 Acta Phys. Sin. 62 190505 (in Chinese) [贺波勇, 李海阳, 张波 2013 物理学报 62 190505]

    [16]

    Tan S C, Su G H, Gao P Z 2009 Ann. Nucl. Eng. 36 103

    [17]

    Tan S C, Su G H, Gao P Z 2009 Appl. Therm. Eng. 29 3160

    [18]

    Tan S C, Pang F G 2005 Nucl. Power Engineer. 26 140 (in Chinese) [谭思超, 庞凤阁 2005 核动力工程 26 140]

    [19]

    Tan S C, Gao P Z, Su G H 2008 Atom. Energy Sci. Technol. 42 1007 (in Chinese) [谭思超, 高璞珍, 苏光辉 2008 原子能科学技术 42 1007]

    [20]

    Jiang H, Li T, Zeng X L, Zhang L P 2014 Chin. Phys. B 23 010501

    [21]

    Zhang W, Tan S, Gao P, Wang Z, Zhang L, Zhang H 2014 Ann. Nucl. Energy 65 1

    [22]

    Srinivas N, Deb K 1994 Evolutionary Comput. 2 221

    [23]

    Bartlett P L 1998 IEEE Trans. Inform. Theory 44 525

    [24]

    Lee W S, Bartlett P L, Williamson R C 1996 IEEE Trans. Inform. Theory 42 2118

  • [1]

    Huang G B, Zhu Q Y, Siew C K 2004 Proceedings of the International Joint Conference on Neural Networks Budapest, Hungary, July 25-29, 2004 p985

    [2]

    Li M B, Huang G B, Saratchandran P, Sundararajan N 2005 Neurocomputing 68 306

    [3]

    Rong H J, Ong Y S, Tan A H, Zhu Z 2008 Neurocomputing 72 359

    [4]

    Miche Y, van Heeswijk M, Bas P, Simula O, Lendasse A 2011 Neurocomputing 74 2413

    [5]

    Feng G, Huang G B, Lin Q, Gay R 2009 IEEE Trans. Neural Networ. 20 1352

    [6]

    Cao J, Lin Z, Huang G B 2010 Neurocomputing 73 1405

    [7]

    Cao J, Lin Z, Huang G B 2011 Neural Process. Lett. 33 251

    [8]

    Javed K, Gouriveau R, Zerhouni N 2014 Neurocomputing 123 299

    [9]

    Gao G Y, Jiang G P 2012 Acta Phys. Sin. 61 040506 (in Chinese) [高光勇, 蒋国平 2012 物理学报 61 040506]

    [10]

    Bhat A U, Merchant S S, Bhagwat S S 2008 Ind. Eeg. Chem. Res. 47 920

    [11]

    Zhu Q Y, Qin A K, Suganthan P N, Huang G B 2005 Pattern Rrcogn. 38 1759

    [12]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182

    [13]

    Huang B, Buckley B, Kechadi T M 2010 Expert Syst. Appl. 37 3638

    [14]

    Ak R, Li Y, Vitelli V, Zio E, Droguett E L, Jacinto C M C 2013 Expert Syst. Appl. 40 1205

    [15]

    He B Y, Li H Y, Zhang B 2013 Acta Phys. Sin. 62 190505 (in Chinese) [贺波勇, 李海阳, 张波 2013 物理学报 62 190505]

    [16]

    Tan S C, Su G H, Gao P Z 2009 Ann. Nucl. Eng. 36 103

    [17]

    Tan S C, Su G H, Gao P Z 2009 Appl. Therm. Eng. 29 3160

    [18]

    Tan S C, Pang F G 2005 Nucl. Power Engineer. 26 140 (in Chinese) [谭思超, 庞凤阁 2005 核动力工程 26 140]

    [19]

    Tan S C, Gao P Z, Su G H 2008 Atom. Energy Sci. Technol. 42 1007 (in Chinese) [谭思超, 高璞珍, 苏光辉 2008 原子能科学技术 42 1007]

    [20]

    Jiang H, Li T, Zeng X L, Zhang L P 2014 Chin. Phys. B 23 010501

    [21]

    Zhang W, Tan S, Gao P, Wang Z, Zhang L, Zhang H 2014 Ann. Nucl. Energy 65 1

    [22]

    Srinivas N, Deb K 1994 Evolutionary Comput. 2 221

    [23]

    Bartlett P L 1998 IEEE Trans. Inform. Theory 44 525

    [24]

    Lee W S, Bartlett P L, Williamson R C 1996 IEEE Trans. Inform. Theory 42 2118

  • [1] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析. 物理学报, 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [2] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [3] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为的多尺度熵模型研究. 物理学报, 2020, 69(10): 108703. doi: 10.7498/aps.69.20200050
    [5] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为 的多尺度熵模型研究. 物理学报, 2020, (): 008700. doi: 10.7498/aps.69.20200051
    [6] 李军, 后新燕. 基于指数加权-核在线序列极限学习机的混沌系统动态重构研究. 物理学报, 2019, 68(10): 100503. doi: 10.7498/aps.68.20190156
    [7] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测. 物理学报, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [8] 章国勇, 伍永刚, 张洋, 代贤良. 一种风电功率混沌时间序列概率区间简易预测模型. 物理学报, 2014, 63(13): 138801. doi: 10.7498/aps.63.138801
    [9] 董建军, 邓博, 曹柱荣, 江少恩. 多目标优化推断内爆芯部温度和密度空间分布. 物理学报, 2014, 63(12): 125209. doi: 10.7498/aps.63.125209
    [10] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测. 物理学报, 2013, 62(6): 060502. doi: 10.7498/aps.62.060502
    [11] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [12] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题. 物理学报, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [13] 高光勇, 蒋国平. 采用优化极限学习机的多变量混沌时间序列预测. 物理学报, 2012, 61(4): 040506. doi: 10.7498/aps.61.040506
    [14] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [15] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配. 物理学报, 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
    [16] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [17] 张家泰, 聂小波, 苏秀敏. 相干与非相干激光成丝不稳定性的数值模拟研究. 物理学报, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [18] 郭世宠, 沈解伍, 蔡诗东. 非均匀磁场中的动力论漂移迴旋损失锥不稳定性. 物理学报, 1987, 36(12): 1598-1609. doi: 10.7498/aps.36.1598
    [19] 马腾才, 宫野. 电流非单调分布时的电阻流体不稳定性. 物理学报, 1984, 33(8): 1112-1119. doi: 10.7498/aps.33.1112
    [20] 王中天. 非圆截面等离子体MHD不稳定性的研究. 物理学报, 1981, 30(5): 573-583. doi: 10.7498/aps.30.573
计量
  • 文章访问数:  5939
  • PDF下载量:  570
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-10-05

/

返回文章
返回