搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配

周杰 刘元安 吴帆 张洪光 俎云霄

引用本文:
Citation:

基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配

周杰, 刘元安, 吴帆, 张洪光, 俎云霄

Allocation of multi-objective cross-layer wireless sensor network resource based on chaotic parallel genetic algorithm

Zhou Jie, Liu Yuan-An, Wu Fan, Zhang Hong-Guang, Zu Yun-Xiao
PDF
导出引用
  • 提出了一种基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配方法,该方法运用混沌序列和并行遗传算法来动态调整传感器网络节点的探测目标及通信时隙等参数,对资源分配方式进行跨层整体优化.在多目标无线传感器网络环境下,将本文方法与传统的随机分配方法、动态规划方法、T-MAC协议及S-MAC协议等资源分配算法进行了仿真比较.仿真结果表明,本文提出的混沌并行遗传算法具有通信时延小,目标检测成功率高等优点,在降低了无线传感器网络功率消耗的同时提高了对目标检测的实时性.
    A chaotic parallel genetic algorithm for the allocation of a multi-objective cross-layer wireless sensor network resource is provided, in which chaotic sequence and parallel genetic algorithm are used to dynamically adjust target selection, communication time slots and other parameters for optimizing the global cross-layer resource allocation. Simulations are conducted to compare the chaotic parallel genetic algorithm method with random allocation algorithm, dynamic programming algorithm, T-MAC protocol and the S-MAC protocol separalely. The simulation results show that the chaotic parallel genetic algorithm has a small communication delay and high success rate of target detection, which reduces the power consumption and improves the real-time characteristic of wireless sensor network.
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号:2008AA012211),国家自然科学基金青年科学基金项目(批准号:61003279)和国家自然科学基金面上项目(批准号:60973111)资助的课题.
    [1]

    Mukhopadhyay S, Schurgers C, Panigrahi D, Dey S 2009 IEEE Transactions on Mobile Computing 8 528

    [2]

    Boukerche A, Samarah S 2009 IEEE Transactions on Vehicular Technology 58 4426

    [3]

    Du J Z, Shi W S 2008 IEEE Transactions on Vehicular Technology 57 3723

    [4]

    Raymond D R, Marchany R C, Brownfield M I, Midkiff S F 2009 IEEE Transactions on Vehicular Technology 58 367

    [5]

    Woonsik L, Minh N, Verma A, Hwang L 2009 IEEE Transactions on Wireless Communications 8 4375

    [6]

    Merhi Z, Elgamel M, Bayoumi M 2009 IEEE Transactions on Mobile Computing 8 1690

    [7]

    Boukerche A, Samarah S 2008 IEEE Transactions on Parallel and Distributed Systems 19 865

    [8]

    Chen F X, Zhang W D 2007 Chin. Phys. 16 937

    [9]

    Wang F Q, Liu C X 2007 Chin. Phys. 16 946

    [10]

    Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597

    [11]

    Wu W, Cui B T 2007 Chin. Phys. 16 1889

    [12]

    Kwan-Wu C 2009 IEEE Transactions on Consumer Electronics 55 1898

    [13]

    Akyildiz I F, Melodia T, Chowdhury K R 2008 Proceedings of the IEEE 96 1588

    [14]

    Kulkarni S, Iyer A, Rosenberg C 2006 IEEE/ACM Transactions on Networking 14 793

    [15]

    Shah-Mansouri V, Wong V 2009 IEEE Transactions on Wireless Communications 9 1924

    [16]

    Wang Xin, Wang Di, Zhuang H Q, Morgera S D 2010 IEEE Journal on Selected Areas in Communications 28 1063

    [17]

    Yan H, Wei P, Xiao X C 2009 Chin. Phys. B 18 3287

    [18]

    Luo X H 2009 Chin. Phys. B 18 3304

    [19]

    Peng J H, Yu H J 2007 Acta Phys. Sin.56 4353 (in Chinese)[彭建华、于洪洁 2007 物理学报 56 4353]

    [20]

    Liu X W, Huang Q Z, Gao X, Shao S Q 2007 Chin. Phys. 16 2272

    [21]

    Sun Z K, Xu W, Yang X L 2007 Chin. Phys. 16 3226

    [22]

    Zhang J S 2007 Chin. Phys. 16 352

    [23]

    Wang G Y, Zheng Y, Liu J B 2007 Acta Phys. Sin.56 3113(in Chinese)[王光义、郑 艳、刘敬彪 2007 物理学报 56 3113]

    [24]

    Liu Y Z, Jiang C S, Lin C S, Jiang Y M 2007 Chin. Phys. 16 660

    [25]

    Gao B J, Lu J A 2007 Chin. Phys. 16 666

    [26]

    Wang X Y, Meng J 2009 Acta Phys. Sin.58 3780 (in Chinese)[王兴元、孟 娟 2009 物理学报 58 3780]

    [27]

    Wang G Y, Liu J B, Zheng X 2007 Chin. Phys. 16 2278

    [28]

    Xu Y, Zhang J X, Xu X, Zhou H 2007 Chin. Phys. 16 2285

    [29]

    Fan L, Xia G Q, Wu Z M 2009 Acta Phys. Sin.58 989(in Chinese)[樊 利、夏光琼、吴正茂 2009 物理学报 58 989]

    [30]

    Zhou P 2007 Chin. Phys. 16 1263

    [31]

    Lu J J, Liu C X 2007 Chin. Phys. 16 1586

    [32]

    Hu J B, Han Y, Zhao L D 2009 Acta Phys. Sin.58 2235 (in Chinese)[胡建兵、韩焱、赵灵冬 2009 物理学报 58 2235]

    [33]

    Li G H 2007 Chin. Phys. 16 2608

    [34]

    Wang S, Cai L, Li Q, Wu G 2007 Chin. Phys. 16 2631

    [35]

    Gao J H, Xie L L, Peng J H 2009 Acta Phys. Sin.58 5218 (in Chinese)[高继华、谢玲玲、彭建华 2009 物理学报 58 5218]

    [36]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [37]

    Song Y Z 2007 Chin. Phys. 16 1918

  • [1]

    Mukhopadhyay S, Schurgers C, Panigrahi D, Dey S 2009 IEEE Transactions on Mobile Computing 8 528

    [2]

    Boukerche A, Samarah S 2009 IEEE Transactions on Vehicular Technology 58 4426

    [3]

    Du J Z, Shi W S 2008 IEEE Transactions on Vehicular Technology 57 3723

    [4]

    Raymond D R, Marchany R C, Brownfield M I, Midkiff S F 2009 IEEE Transactions on Vehicular Technology 58 367

    [5]

    Woonsik L, Minh N, Verma A, Hwang L 2009 IEEE Transactions on Wireless Communications 8 4375

    [6]

    Merhi Z, Elgamel M, Bayoumi M 2009 IEEE Transactions on Mobile Computing 8 1690

    [7]

    Boukerche A, Samarah S 2008 IEEE Transactions on Parallel and Distributed Systems 19 865

    [8]

    Chen F X, Zhang W D 2007 Chin. Phys. 16 937

    [9]

    Wang F Q, Liu C X 2007 Chin. Phys. 16 946

    [10]

    Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597

    [11]

    Wu W, Cui B T 2007 Chin. Phys. 16 1889

    [12]

    Kwan-Wu C 2009 IEEE Transactions on Consumer Electronics 55 1898

    [13]

    Akyildiz I F, Melodia T, Chowdhury K R 2008 Proceedings of the IEEE 96 1588

    [14]

    Kulkarni S, Iyer A, Rosenberg C 2006 IEEE/ACM Transactions on Networking 14 793

    [15]

    Shah-Mansouri V, Wong V 2009 IEEE Transactions on Wireless Communications 9 1924

    [16]

    Wang Xin, Wang Di, Zhuang H Q, Morgera S D 2010 IEEE Journal on Selected Areas in Communications 28 1063

    [17]

    Yan H, Wei P, Xiao X C 2009 Chin. Phys. B 18 3287

    [18]

    Luo X H 2009 Chin. Phys. B 18 3304

    [19]

    Peng J H, Yu H J 2007 Acta Phys. Sin.56 4353 (in Chinese)[彭建华、于洪洁 2007 物理学报 56 4353]

    [20]

    Liu X W, Huang Q Z, Gao X, Shao S Q 2007 Chin. Phys. 16 2272

    [21]

    Sun Z K, Xu W, Yang X L 2007 Chin. Phys. 16 3226

    [22]

    Zhang J S 2007 Chin. Phys. 16 352

    [23]

    Wang G Y, Zheng Y, Liu J B 2007 Acta Phys. Sin.56 3113(in Chinese)[王光义、郑 艳、刘敬彪 2007 物理学报 56 3113]

    [24]

    Liu Y Z, Jiang C S, Lin C S, Jiang Y M 2007 Chin. Phys. 16 660

    [25]

    Gao B J, Lu J A 2007 Chin. Phys. 16 666

    [26]

    Wang X Y, Meng J 2009 Acta Phys. Sin.58 3780 (in Chinese)[王兴元、孟 娟 2009 物理学报 58 3780]

    [27]

    Wang G Y, Liu J B, Zheng X 2007 Chin. Phys. 16 2278

    [28]

    Xu Y, Zhang J X, Xu X, Zhou H 2007 Chin. Phys. 16 2285

    [29]

    Fan L, Xia G Q, Wu Z M 2009 Acta Phys. Sin.58 989(in Chinese)[樊 利、夏光琼、吴正茂 2009 物理学报 58 989]

    [30]

    Zhou P 2007 Chin. Phys. 16 1263

    [31]

    Lu J J, Liu C X 2007 Chin. Phys. 16 1586

    [32]

    Hu J B, Han Y, Zhao L D 2009 Acta Phys. Sin.58 2235 (in Chinese)[胡建兵、韩焱、赵灵冬 2009 物理学报 58 2235]

    [33]

    Li G H 2007 Chin. Phys. 16 2608

    [34]

    Wang S, Cai L, Li Q, Wu G 2007 Chin. Phys. 16 2631

    [35]

    Gao J H, Xie L L, Peng J H 2009 Acta Phys. Sin.58 5218 (in Chinese)[高继华、谢玲玲、彭建华 2009 物理学报 58 5218]

    [36]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [37]

    Song Y Z 2007 Chin. Phys. 16 1918

  • [1] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法. 物理学报, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [2] 李小龙, 冯东磊, 彭鹏程. 一种基于势博弈的无线传感器网络拓扑控制算法. 物理学报, 2016, 65(2): 028401. doi: 10.7498/aps.65.028401
    [3] 蒋锐, 杨震. 基于质心迭代估计的无线传感器网络节点定位算法. 物理学报, 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [4] 郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月. 一种无线传感器网络健壮性可调的能量均衡拓扑控制算法. 物理学报, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [5] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法. 物理学报, 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [6] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究. 物理学报, 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [7] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略. 物理学报, 2014, 63(22): 220701. doi: 10.7498/aps.63.220701
    [8] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [9] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究. 物理学报, 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [10] 韩丽, 刘彬, 李雅倩, 赵磊静. 能量异构的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(15): 150504. doi: 10.7498/aps.63.150504
    [11] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析. 物理学报, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [12] 宋佳, 罗清华, 彭喜元. 基于节点健康度的无线传感器网络冗余通路控制方法. 物理学报, 2014, 63(12): 128401. doi: 10.7498/aps.63.128401
    [13] 刘浩然, 尹文晓, 韩涛, 董明如. 一种优化无线传感器网络生命周期的容错拓扑研究. 物理学报, 2014, 63(4): 040509. doi: 10.7498/aps.63.040509
    [14] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离. 物理学报, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [15] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [16] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [17] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法. 物理学报, 2013, 62(7): 070201. doi: 10.7498/aps.62.070201
    [18] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究. 物理学报, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [19] 王翥, 王祁, 魏德宝, 王玲. 无线传感器网络中继节点布居算法的研究. 物理学报, 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [20] 佟晓筠, 左科, 王翥. 基于无线传感器网络的混合混沌新分组加密算法. 物理学报, 2012, 61(3): 030502. doi: 10.7498/aps.61.030502
计量
  • 文章访问数:  6353
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-16
  • 修回日期:  2010-12-13
  • 刊出日期:  2011-09-15

基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配

  • 1. 北京邮电大学电子工程学院,北京 100876
    基金项目: 国家高技术研究发展计划(863计划)(批准号:2008AA012211),国家自然科学基金青年科学基金项目(批准号:61003279)和国家自然科学基金面上项目(批准号:60973111)资助的课题.

摘要: 提出了一种基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配方法,该方法运用混沌序列和并行遗传算法来动态调整传感器网络节点的探测目标及通信时隙等参数,对资源分配方式进行跨层整体优化.在多目标无线传感器网络环境下,将本文方法与传统的随机分配方法、动态规划方法、T-MAC协议及S-MAC协议等资源分配算法进行了仿真比较.仿真结果表明,本文提出的混沌并行遗传算法具有通信时延小,目标检测成功率高等优点,在降低了无线传感器网络功率消耗的同时提高了对目标检测的实时性.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回