搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共格析出强化的超高强度马氏体时效不锈钢组织和力学性能

杨宇贤 王镇华 王清 唐才宇 万鹏 曹达华 董闯

引用本文:
Citation:

共格析出强化的超高强度马氏体时效不锈钢组织和力学性能

杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯

Microstructure structure and mechanical properties of ultrahigh strength maraging stainless steel strengthened by coherent precipitation

Yang Yu-Xian, Wang Zhen-Hua, Wang Qing, Tang Cai-Yu, Wan Peng, Cao Da-Hua, Dong Chuang
PDF
导出引用
  • 超高强度马氏体时效不锈钢同时拥有优异的强度及易加工等良好性能,广泛应用于如飞机起落架等关键承载部件中。然而,由于析出的纳米粒子通常与BCC马氏体基体呈半共格或非共格关系,传统马氏体时效不锈钢在追求超高强度的同时依然面临材料强韧性制衡这一难题。本工作通过团簇式设计方法设计了一种新型共格析出强化的超高强度马氏体时效不锈钢(Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb,wt.%)。实验结果表明,该冷轧态不锈钢时效后马氏体组织晶粒发生破碎,拉长,同时BCC马氏体基体中存在高密度位错(~1.8×10-3 nm-2)和大量的共格析出的B2-NiAl纳米粒子(<5 nm)。力学性能方面,该不锈钢在时效过程后表现出明显的时效硬化,峰值时效硬度达到651 HV。并且该不锈钢不仅具有极高的屈服强度(sYS=2.3 GPa),而且具有良好的断后延伸率(El=3.6%),表明实现了良好的强塑性匹配。最后,我们对该不锈钢的超高强度来源进行了深入讨论,发现该不锈钢的超高强度来自于各不同微观结构的强化作用。本工作为进一步设计开发出高性能超高强度马氏体时效不锈钢提供了有价值的参考
    Ultra-high strength maraging stainless steels are widely used in many critical applications, such as aircraft landing gears owing to their excellent strength and good processability. However, traditional ultra-high strength maraging stainless steels face the challenge of balancing strength and ductility in the pursuit of ultra-high strength. This is mainly due to the semi-coherent or non-coherent relationship between the precipitated nanoparticles and the body-centered cubic (BCC) martensitic matrix. In this study, we design a novel ultra-high strength maraging stainless steel (Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb, wt.%) using a cluster formula approach. Alloy ingots are prepared by vacuum induction melting under an argon atmosphere, followed by hot rolling at 950℃ and multiple passes of cold rolling. Finally, the alloy is aged at 500℃ for up to 288 h. Microstructural characterizations of the alloy in different aging states are performed using EBSD and TEM. As a result, the martensitic structure of the alloy was fragmented and elongated, with high-density dislocations (~ 1.8×10-3 nm-2) and a large number of coherent B2-NiAl nanoparticles (< 5 nm) observed in the BCC martensitic matrix after cold rolling and aging. In terms of mechanical properties, the alloy exhibits significant age-hardening, with a peak-aged hardness of 651 HV after ageing treatment. It also demonstrates an extraordinarily high yield strength (sYS = 2.3 GPa) and a decent elongation (El = 3.6%), indicating a well-balanced strength-ductility property. Finally, we present an in-depth discussion on the origins of the ultra-high strength in the novel alloy, revealing that various microstructural features contribute to its strengthening mechanism. This study provides valuable guidance for the design of high-performance ultra-high strength maraging stainless steels.
  • [1]

    Yang K, Niu M C, Tian J L, Wang W 2018Acta. Metall. Sin. 54 1567(in Chinese) [杨柯, 牛梦超, 田家龙, 王威2018金属学报54 1567]

    [2]

    Luo H W, Shen G H 2020Acta. Metall. Sin. 56 494(in Chinese) [罗海文, 沈国慧2020金属学报56 494]

    [3]

    Sun W W, R. K. W. Marceau, M.J. Styles, D. Barbier, C.R. Hutchinson 2017Acta Mater. 130 28

    [4]

    J. W. Morris Jr 2017Nat. Mater. 16 787

    [5]

    Yang J R, Yu T H, Wang C H 2006Mater. Sci. Eng. A 438 276

    [6]

    Shi X H, Zeng W D, Zhao Q Y, Peng W W, Kang C 2016J. Alloys. Compd. 679 184

    [7]

    D.E. Wert, R.P. DiSabella, Strong 2006Adv. Mater. Process. 164 34

    [8]

    S. Ifergane, M. Pinkas, Z. Barkayc, E. Brosh, V. Ezersky, O. Beeri, N. Eliaz 2017Mater. Charact. 127 129

    [9]

    S. Floreen 1968Metall. Rev. 13 115

    [10]

    R. Tewari, S. Mazumder, I. S. Batra, G. K. Dey, S. Banerjee 2000Acta Mater. 48 1187

    [11]

    Xu W, P.E.J. Rivera-Díaz-del-Castillo, Yan W, Yang K, D. San Martín, L.A.I. Kestens, S. van der Zwaag 2010Acta Mater. 58 4067

    [12]

    Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H, Han P D 2015J. Alloys. Compd. 621 383

    [13]

    O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, L. Meshi 2015Mater. Sci. Eng. A 638 232

    [14]

    Zhou Q Q, Zhai Y C 2009Acta Metall. Sin. 45 1249(in Chinese) [周倩青, 翟玉春2009金属学报45 1249]

    [15]

    M. Hättestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson 2004Acta Mater. 52 1023

    [16]

    A. Ghosh, S. Das, S. Chatterjee 2008Mater. Sci. Eng. A 486 152

    [17]

    A. Mahmoudi, M.R. Zamanzad Ghavidel, S. Hossein Nedjad, A. Heidarzadeh, M. Nili Ahmadabadi 2011Mater. Charact. 62 976

    [18]

    H. Leitner, R. Schnitzer, M. Schober, S. Zinner 2011Acta Mater. 59 5012

    [19]

    V. Vaithyanathan, Chen L Q 2002Acta Mater. 50 4061

    [20]

    Li H, Liu Y, Liu B 2022Mater. Sci. Eng. A 842 143099

    [21]

    Niu M C, Zhou G, Wang W, M. Babar Shahzad, Shan Y Y, Yang K 2019Acta Mater. 179 296

    [22]

    Wan J, Ruan H, Ding Z, Kong L 2023Scr. Mater. 226 115224

    [23]

    Li K, Yu B, R.D.K. Misra, Han G, Liu S, Shang C J 2018Mater. Sci. Eng. A 715 485

    [24]

    S.W. Ooi, P. Hill, M. Rawson, H.K.D.H. Bhadeshia 2013Mater. Sci. Eng. A 564 485

    [25]

    Liu T Q, Cao Z X, Wang H, Wu G L, Jin J J, Cao W Q 2020Scr. Mater. 178 285

    [26]

    Li Y C, Yan W, J.D. Cotton, G.J. Ryan, Shen Y F, Wang W, Shan Y Y, Yang K 2015Mater. Des. 82 56

    [27]

    P. Hedströma, S. Baghsheikhi, P. Liu, J. Odqvist 2012Mater. Sci. Eng. A 534 552

    [28]

    Li J L, Zhang J Q, Li Z, Wang Q, Dong C, Xu F, Sun L X, P. K. Liaw 2024J. Mater. Sci. Technol. 186 174

    [29]

    Zhang J X, Wang J C, H. Harada, Y. Koizumi 2005Acta Mater. 53 4623

    [30]

    Wang Z H, Wang Q, Niu B, Dong C, Zhang H W, Zhang H F, P. K. Liaw 2021Mater. Res. Lett. 9 458

    [31]

    Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, B. Gault, D. Ponge, D. Raabe, A. Hirata, Chen M W, Wang Y D, Lu Z P 2017Nature. 544 460

    [32]

    Zhou B C, Liu S F, Wu H H, Luan J H, Guo J M. Yang T, Jiao Z B 2023Mater. Des. 234 112341

    [33]

    Liang Y J, Wang L J, Wen Y R, Cheng B Y, Wu Q L, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C, Cai H N 2018Nat. Commun. 9 4063

    [34]

    Hong H L, Wang Q, Dong C, P.K. Liaw 2014Sci. Rep. 4 7065

    [35]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015J. Alloys. Compd. 652 63

    [36]

    Wang Z H, Niu B, Wang Q, Dong C, Jie J C, Wang T M, T.G. Nieh 2021J. Mater. Sci. Technol. 93 60

    [37]

    H.A. Calderon, M.E. Fine, J.R. Weertman 1987Metall. Trans. A 19 1135

    [38]

    N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand 2014Acta Mater. 71 89

    [39]

    E.J. Czyryca 1993Key Eng. Mater. 84 491

    [40]

    Wen D H, Wang Q, Jiang B B, Zhang C, Li X N, Chen G Q, Tang R, Zhang R Q, Dong C, P.K. Liaw 2018Mater. Sci. Eng. A 719 27

    [41]

    N. Bailey 1993Welding Steels without Hydrogen Cracking (Cambridge: Woodhead Publishing) p69

    [42]

    C.L. Briant, S.K. Banerji 1978Int. Metal. Rev. 23 164

    [43]

    W.F. Hosford 2005Mechanical Behavior of Materials (New York: Cambridge University Press) p16

    [44]

    H. Leitner, M. Schober, R. Schnitzer 2010Acta Mater. 58 1261

    [45]

    Bi Z X 2014Special Steel Technology. 20 11(in Chinese) [毕正绪2014特钢技术20 11]

    [46]

    E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo 2015Acta Mater. 98 81

    [47]

    E.I. Galindo-Nava, W.M. Rainforth, P.E.J. Rivera-Díaz-del-Castillo 2016Acta Mater. 117 270

    [48]

    P.E.J. Rivera-Díaz-del-Castillo, K. Hayashi, E.I. Galindo-Nava 2013Mater. Sci. Technol. 29 1206

    [49]

    R.L. Fleischer 1961Acta Matall. 9 966

    [50]

    D.R. Lide 2008CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) 12-10

    [51]

    S. Morito, H. Yoshida, T. Maki, Huang X 2006Mater. Sci. Eng. A 438 237

    [52]

    U.F. Kocks, H. Mecking 2003Prog. Mater Sci. 48 171

    [53]

    Su J, Raabe D, Li Z M 2019Acta Mater. 163 40

    [54]

    E. Nembach 1997Mater. Sci. Technol. 3 329

    [55]

    T. Gladman 1999Mater. Sci. J. 15 30

    [56]

    A. Argon 2007Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press) p74

    [57]

    P.M. Kelley 1973Int. Metall. Rev. 18 31

    [58]

    A. Kelly, R.B. Nicholson 1971Strengthening Methods in Crystals (London: Elsevier) p37

    [59]

    T. Hong, A.J. Freeman 1991Phys. Rev. B Condens. Matter. 43 6446

  • [1] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, doi: 10.7498/aps.73.20241353
    [2] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, doi: 10.7498/aps.73.20240554
    [3] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测. 物理学报, doi: 10.7498/aps.71.20211443
    [4] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响. 物理学报, doi: 10.7498/aps.67.20181251
    [5] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术. 物理学报, doi: 10.7498/aps.66.164301
    [6] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, doi: 10.7498/aps.64.247301
    [7] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, doi: 10.7498/aps.63.106102
    [8] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, doi: 10.7498/aps.62.035202
    [9] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, doi: 10.7498/aps.62.054301
    [10] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制. 物理学报, doi: 10.7498/aps.59.1349
    [11] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究. 物理学报, doi: 10.7498/aps.55.1821
    [12] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池. 物理学报, doi: 10.7498/aps.54.2945
    [13] 陈晓伟, 刘 军, 朱 毅, 冷雨欣, 葛晓春, 李儒新, 徐至展. 高强度飞秒激光脉冲在空气中的自压缩. 物理学报, doi: 10.7498/aps.54.3665
    [14] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究. 物理学报, doi: 10.7498/aps.51.928
    [15] 魏学勤, 郑启光, 辜建辉, 李再光. 连续CO2激光辐照加热不锈钢时的反常温度涨落特性. 物理学报, doi: 10.7498/aps.48.2246
    [16] 李玉璞, 王佩璇, 张国光, 马如璋, 刘家瑞, 朱沛然, 邱长青. He在HR-1型不锈钢中的捕获与释放研究. 物理学报, doi: 10.7498/aps.38.1122
    [17] 许政一, 张安东, 徐刚, 杨华光, 李荫远. α-LiIO3单晶中离子输运引起的高强度准弹性光散射. 物理学报, doi: 10.7498/aps.31.615
    [18] 蔡其巩, 朱静, 何崇智. 马氏体时效钢的时效结构. 物理学报, doi: 10.7498/aps.23.26
    [19] 马应良, 葛庭燧. 高碳和低碳马氏体回火分解产物的共格性所引起的内耗峯. 物理学报, doi: 10.7498/aps.20.72
    [20] 庄育智, 李有柯. 18/8型不锈钢中σ-相的形成. 物理学报, doi: 10.7498/aps.10.321
计量
  • 文章访问数:  92
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回