搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超级质子-质子对撞机束屏内气体密度演化规律研究

游志明 王洁 高勇 范佳锟 张静 胡耀程 王盛 许章炼 张琦

引用本文:
Citation:

超级质子-质子对撞机束屏内气体密度演化规律研究

游志明, 王洁, 高勇, 范佳锟, 张静, 胡耀程, 王盛, 许章炼, 张琦

Gas density evolution in beam screen of super proton-proton collider

You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi
PDF
HTML
导出引用
  • 真空稳定性问题是粒子加速器设计中的关键问题之一, 对高能量的超级质子-质子对撞机而言更是如此. 质子束流在弯转区产生的同步辐射将会引起束屏壁面吸附的气体分子发生解吸和裂解, 从而引发真空不稳定问题, 导致束流品质和寿命的降低, 甚至引起束流的崩溃. 本文通过建立超级质子-质子对撞机束屏内的气体动态模型, 首次计算分析了束屏内气体密度随束流运行时间的演化规律, 并探究了将非蒸散型吸气剂涂层应用于束屏设计的优化方案. 结果表明: H2是束屏内的主要解吸气体, 其次是CO, 而CO2和CH4分子密度被分子裂解所限制. 束屏内最高气体密度出现在运行初期, 气体密度随时间呈下降趋势. 考虑到非蒸散型吸气剂涂层具有强化吸附降低解吸的特性, 讨论了不锈钢镀TiZrV涂层的束屏方案, 计算得到最高等效H2密度相比不锈钢镀铜降低接近两个数量级. 计算结果定性地反映束流运行过程中束屏内的动态真空演化情况, 可为真空系统设计提供参考.
    Vacuum stability is one of the key issues in the design of particle accelerators, especially high-energy super proton-proton colliders. The synchrotron radiation generated by proton beams in the bending area will desorb and crack the gas molecules which have adsorbed on the wall of the cold bore. The collision or scattering between the proton beam and the desorbed gas molecules may result in the degradation of the beam quality and the reduction of beam life time, and even the collapse of the beam. Usually a copper coated stainless steel beam screen is installed in the cold bore to intercept synchrotron radiation and reduce gas desorption. Based on the design parameters of the Super Proton-Proton Collider, in this paper the source of gas in the beam screen is analyzed. By considering the photon-induced desorption process and the gas molecule cracking process, the gas dynamic model in the beam screen is established. Moreover, the calculation of the evolution of the gas density in the beam screen with the beam operating time is carried out, and the effect of TiZrV non-evaporable getter film coated beam screen on the dynamic gas density is explored. The results show that H2 is the main desorption gas in the beam, the next is CO, while the molecular density of CO2 and CH4 are limited by molecular cracking. The maximum gas density in the beam screen appears at the initial stage of operation, and the gas density decreases with time going by. In order to strengthen adsorption and reduce desorption, TiZrV coated beam screen is discussed in this paper. In the case of TiZrV coated stainless steel beam screen, the maximum equivalent H2 density is about two order of magnitude lower than in the case of copper coated stainless steel beam screen. The non-evaporable getter(NEG) for beam screen material can significantly improve vacuum performance. The calculation results can qualitatively reflect the dynamic vacuum evolution in the beam screen during the beam operation and provide a reference for designing vacuum systems.
      通信作者: 王洁, wangjie1@xjtu.edu.cn ; 王盛, shengwang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11905170)、中央高校基本科研业务费专项资金(批准号: XJH012019018)、陕西省自然科学基金青年科学基金(批准号: 2020JQ-001)、中国博士后科学基金(批准号: 2018M643667)、陕西省博士后科学基金(批准号: 2018BSHEDZZ05)、中国核工业集团有限公司领创科研项目、国家自然科学基金(批准号: 11775166)和广东省基础与应用基础研究基金(批准号: 2020B1515120035)
      Corresponding author: Wang Jie, wangjie1@xjtu.edu.cn ; Wang Sheng, shengwang@xjtu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11905170), the Fundamental Research Funds for the Central Universities (Grant No. XJH012019018), the Young Scientists Fund of the Natural Science Foundation of Shaanxi Province, China(Grant No. 2020JQ-001), the China Postdoctoral Science Foundation (Grant No. 2018M643667), the Shaanxi Provincial Postdoctoral Science Foundation, China (Grant No. 2018BSHEDZZ05), the Innovative Scientific Program of CNNC, the National Natural Science Foundation of China(Grant No. 11775166), and the Guangdong Provincial Basic and Applied Basic Research Foundation of China (Grant No. 2020B1515120035)
    [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B 716 1Google Scholar

    [2]

    Chatrchyan S, Khachatryan V, Sirunyan A M, Tumasyan A, Adam W, Aguilo E, Bergauer T, Dragicevic M, Erö J, Fabjan C 2012 Phys. Lett. B 716 30Google Scholar

    [3]

    Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, Fabjan C, Friedl M 2013 J. High Energy Phys. 2013 81Google Scholar

    [4]

    Behnke T, Brau J E, Foster B, Fuster J, Harrison M, Paterson J M, Peskin M, Stanitzki M, Walker N, Yamamoto H 2013 arXiv: 1306.6327 [physics.acc-ph]

    [5]

    Mangano M, Azzi P, Benedikt M, Blondel A, Britzger D, Dainese A 2019 Eur. Phys. J. C 79 474Google Scholar

    [6]

    CEPC Study Group 2018 arXiv: 1809.00285 [ap-ph]

    [7]

    FCC collaboration 2019 Eur. Phys. J. Spec. Top. 228 755Google Scholar

    [8]

    Brüning O S, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, Proudlock P 2004 LHC Design Report (Geneva, CERN, CERN-2004-003-V-1 [R])

    [9]

    Bellafont I, Morrone M, Mether L, Fernández J, Kersevan R, Garion C, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 033201Google Scholar

    [10]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1997 Vacuum 48 785Google Scholar

    [11]

    Malyshev O B, Anashin V V, Collins I, Gröbner O 1999 Photon Stimulated Desorption Processes including Cracking of Molecules in a Vacuum Chamber at Cryogenic Temperatures (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-13 [R])

    [12]

    Baglin V, Tavian L, Lebrun P, van Weelderen R 2013 Cryogenic Beam Screens for High-energy Particle Accelerators (Geneva, CERN, CERN-ATS-2013-006 [R])

    [13]

    Mathewson A G, Gröbner O, Strubin P, Marin P, Souchet R 1991 AIP Conf. Proc. 236 313Google Scholar

    [14]

    Foerster C, Halama H, Lanni C 1990 J. Vac. Sci. Technol., A 8 2856Google Scholar

    [15]

    Hseuh H, Cui X 1989 J. Vac. Sci. Technol., A 7 2418Google Scholar

    [16]

    Gröbner O 1999 CAS-CERN Accelerator School: Vacuum Technology Snekersten, Denmark, May 28–Jun 3, 1999 p127

    [17]

    Baglin V, Collins I R, Gröbner O, Grünhagel C, Jenninger B 2002 Vacuum 67 421Google Scholar

    [18]

    Malyshev O B 2012 Vacuum 86 1669Google Scholar

    [19]

    Bellafont I, Mether L, Kersevan R, Malyshev O B, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 043201Google Scholar

    [20]

    Perez Rodriguez F J, Garion C, Chiggiato P, Fernandez Topham J 2017 Preliminary Beam Screen and Beam Pipe Engineering Design: Deliverable D4.3 (Geneva, CERN, CERN-ACC-2019-0023 [R])

    [21]

    Gan P P, Fu Q, Li H P, Liu Y D, Lu Y R, Tang J Y, Xu Q J, Zhu K 2017 the 8th International Particle Accelerator Conference (IPAC'17) Copenhagen, Denmark, May 14−19, 2017 p2974

    [22]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670Google Scholar

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670Google Scholar

    [23]

    Anashin V V, Malyshev O B, Collins I R, Gröbner O 2001 Vacuum 60 15Google Scholar

    [24]

    Collins I R, Malyshev O 2001 Dynamic Gas Density in the LHC Interaction Regions 1&5 and 2&8 for Optics version 6.3 (Geneva, CERN, LHC-PROJECT-NOTE-274 [R])

    [25]

    Anashin V V, Malyshev O B, Osipov V N, Maslennikov I L, Turner W C 1994 J. Vac. Sci. Technol., A 12 2917Google Scholar

    [26]

    Malyshev O B 2020 Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems (USA: John Wiley & Sons) p96

    [27]

    Billy J C, Bojon J P, Henrist B, Hilleret N, Jimenez M J, Laugier I, Strubin P 2001 Vacuum 60 183Google Scholar

    [28]

    Andritschky M, Gröbner O, Mathewson A, Schumann F, Strubin P, Souchet R 1988 Vacuum 38 933Google Scholar

    [29]

    Gröbner O, Calder R 1973 IEEE Trans. Nucl. Sci. 20 760Google Scholar

    [30]

    Malyshev O B, Rossi A 1999 Ion desorption stability in the LHC (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-20 [R])

    [31]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 405 258Google Scholar

    [32]

    Bellafont I, Mether L, Kersevan R 2019 the 10th International Particle Accelerator Conference (IPAC'19) Melbourne, Australia, May 19−24, 2019 TUPMP038

    [33]

    Baglin V, Grünhagel C, Collins I R, Gröbner O, Jenninger B 2002 Synchrotron Radiation Studies of the LHC Dipole Beam Screen with COLDEX (Geneva, CERN, LHC-Project-Report-584 [R])

    [34]

    Baglin V, Collins I R, Grünhagel C, Gröbner O, Jenninger B 2000 First Results from COLDEX Applicable to the LHC Cryogenic Vacuum System (Geneva, CERN, LHC-Project-Report-435 [R])

    [35]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J M 2011 Synchrotron Radiation in the LHC Vacuum System (Geneva, CERN, CERN-ATS-2011-245 [R])

    [36]

    Rathjen C 2002 Mechanical Behaviour of Vacuum Chambers and Beam Screens under Quench Conditions in Dipole and Quadrupole Fields (Geneva, CERN, LHC-Project-Report-582 [R])

    [37]

    Malyshev O B, Scott D, Bailey I, Barber D, Baynham E, Bradshaw T, Brummitt A, Carr S, Clarke J, Cooke P 2007 J. Vac. Sci. Technol., A 25 791Google Scholar

    [38]

    Calder R, Gröbner O, Mathewson A G, Anashin V, Dranichnikov A, Malyshev O B 1996 J. Vac. Sci. Technol., A 14 2618Google Scholar

    [39]

    Spallino L, Angelucci M, Larciprete R, Cimino R 2019 Appl. Phys. Lett. 114 153103Google Scholar

    [40]

    Anashin V V, Derevyankin G, Dudnikov V, Malyshev O B, Osipov V, Foerster C, Jacobsen F, Ruckman M, Strongin M, Kersevan R 1994 J. Vac. Sci. Technol., A 12 1663Google Scholar

    [41]

    La Francesca E, Angelucci M, Liedl A, Spallino L, Gonzalez L A, Bellafont I, Siewert F, Sertsu M G, Sokolov A, Schäfers F, Cimino R 2020 Phys. Rev. Accel. Beams 23 083101Google Scholar

    [42]

    Alamgir M K, Ikram M, Mughal G H, Asghar G, ur Rehman S, Qaseem S, Kamran M, Ullah A, Khan S 2019 J. Korean Phys. Soc. 75 373Google Scholar

    [43]

    Anashin V V, Collins I R, Dostovalov R V, Fedorov N V, Krasnov A A, Malyshev O B, Ruzinov V L 2004 Vacuum 75 155Google Scholar

    [44]

    Širvinskaitė R, Malyshev O B, Valizadeh R, Hannah A, Cropper M D 2020 Vacuum 179 109510Google Scholar

    [45]

    Ady M 2016 Monte Carlo Simulations of ultra High Vacuum and Synchrotron Radiation for Particle Accelerators (Lausanne, EPFL, BEL-EPFL-Thesis7063-7 [R])

    [46]

    Malyshev O B, Smith A, Valizadeh R, Hannah A 2010 J. Vac. Sci. Technol., A 28 1215Google Scholar

    [47]

    Chiggiato P, Costa Pinto P 2006 Thin Solid Films 515 382Google Scholar

  • 图 1  COLDEX束屏内气体分压的实验测试结果与计算结果对比 (a) 实验测试结果; (b)计算结果

    Fig. 1.  Comparisons of experimental results and calculated results of gas partial pressure in COLDEX beam screen: (a) Experimental test results; (b) calculated results.

    图 2  FCC-hh束屏设计方案示意图[9]

    Fig. 2.  FCC-hh beam screen design schematic diagram.

    图 3  一次解吸产额关于临界光子能量的函数[37]

    Fig. 3.  Primary photon desorption yield as function of critical photon energy[37].

    图 4  镀铜涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额 η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

    Fig. 4.  (a) The gas density n, (b) primary photodesorption yieldη and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a copper coated stainless steel beam screen.

    图 5  镀TiZrV涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

    Fig. 5.  (a) The gas density n, (b) primary photodesorption yield η and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a TiZrV coated stainless steel beam screen.

    表 1  SPPC, LHC与FCC-hh主要参数对比

    Table 1.  Main parameters of SPPC, LHC and FCC-hh.

    主要参数LHC[8]FCC-hh[7,9]SPPC[6]
    质心系能量/TeV1410075
    环周长/km28100100
    二极磁场强度 B/T8.31612
    束流电流 I/mA580500730
    SR线功率密度 P/(W·m–1)0.2235.412.8
    临界光子能量 $ {\varepsilon }_{\rm{c}} $/eV4442691814
    光子通量密度 Γ/(m-1·s–1)10171.7 × 10171.8 × 1017
    下载: 导出CSV

    表 2  二次解吸和裂解参数的上限值[11]

    Table 2.  Maximal values of secondary desorption and cracking parameters[11].

    气体种类H2CH4COCO2O2
    $\eta ' _{ {\rm{r} }\;{\rm{max} } }$0.550.40.040.450.04
    $\eta '_{\rm{max} }$0.550.040.040.040.04
    $ {\kappa }_{\rm{max}} $$ {\kappa }_{{{\rm{C}}{\rm{H}}}_{4}\stackrel{}{\to }2{{\rm{H}}}_{2}+{\rm{C}}}\approx 0.36 $$ {\kappa }_{{{\rm{C}}{\rm{O}}}_{2}\stackrel{}{\to }{\rm{C}}{\rm{O}}+{\rm{O}}}\approx 0.41 $
    $ {\chi }_{\rm{max}} $$ {\chi }_{{{\rm{H}}}_{2}}\left({s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.72 $$ {\rm{\chi }}_{{\rm{C}}{\rm{O}}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}+{s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.41+0.36 $$ {\chi }_{{{\rm{O}}}_{2}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}\right)\approx 0.2 $
    下载: 导出CSV

    表 3  LHC型铜样品、锯齿形铜样品及激光刻蚀铜样品的光子反射率及光电子产额[41]

    Table 3.  Photon reflectivity and photoelectron yield of LHC type samples, sawtooth copper samples and laser treated copper samples[41]

    样品类型反射率R光电子产额${Y_{{\rm{pe}}}}$
    LHC型铜样品(LHC)0.750.25
    锯齿形铜样品(ST)0.070.08
    激光刻蚀铜样品(LASE)0.0060.09
    下载: 导出CSV
    术语
    A (cm2) 真空腔室轴向单位长度壁面面积
    $u = {A_{\rm{c}}}{D_{\rm{k}}}$(cm4/s) 轴向单位长度真空流导
    ${A_{\rm{c}}}$(cm2) 真空腔室横截面积
    V (cm3) 真空腔室体积
    $C = \rho {k_{\rm{t}}}S$ (cm3/s) 束屏孔的抽气速率
    v (cm/s) 平均分子速率
    ${D_{\rm{k}}}$(cm2/s) 努森扩散系数
    α 分子在壁面的黏附系数
    ${k_{\rm{t}}}$ 束屏开孔率(束屏抽气孔面积与束屏表面积之比)
    Γ (photons/(s·m)) 光子通量密度
    n (molecules/cm3) 气体体密度
    η (molecules/photon) 一次解吸产额
    $S = Av/4$(cm3/s) 壁面理想抽气速率
    $\eta '$(molecules/photon) 二次解吸产额
    s (molecules/cm2) 气体表面密度
    ρ 束屏孔的克劳辛系数
    下载: 导出CSV
  • [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B 716 1Google Scholar

    [2]

    Chatrchyan S, Khachatryan V, Sirunyan A M, Tumasyan A, Adam W, Aguilo E, Bergauer T, Dragicevic M, Erö J, Fabjan C 2012 Phys. Lett. B 716 30Google Scholar

    [3]

    Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, Fabjan C, Friedl M 2013 J. High Energy Phys. 2013 81Google Scholar

    [4]

    Behnke T, Brau J E, Foster B, Fuster J, Harrison M, Paterson J M, Peskin M, Stanitzki M, Walker N, Yamamoto H 2013 arXiv: 1306.6327 [physics.acc-ph]

    [5]

    Mangano M, Azzi P, Benedikt M, Blondel A, Britzger D, Dainese A 2019 Eur. Phys. J. C 79 474Google Scholar

    [6]

    CEPC Study Group 2018 arXiv: 1809.00285 [ap-ph]

    [7]

    FCC collaboration 2019 Eur. Phys. J. Spec. Top. 228 755Google Scholar

    [8]

    Brüning O S, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, Proudlock P 2004 LHC Design Report (Geneva, CERN, CERN-2004-003-V-1 [R])

    [9]

    Bellafont I, Morrone M, Mether L, Fernández J, Kersevan R, Garion C, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 033201Google Scholar

    [10]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1997 Vacuum 48 785Google Scholar

    [11]

    Malyshev O B, Anashin V V, Collins I, Gröbner O 1999 Photon Stimulated Desorption Processes including Cracking of Molecules in a Vacuum Chamber at Cryogenic Temperatures (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-13 [R])

    [12]

    Baglin V, Tavian L, Lebrun P, van Weelderen R 2013 Cryogenic Beam Screens for High-energy Particle Accelerators (Geneva, CERN, CERN-ATS-2013-006 [R])

    [13]

    Mathewson A G, Gröbner O, Strubin P, Marin P, Souchet R 1991 AIP Conf. Proc. 236 313Google Scholar

    [14]

    Foerster C, Halama H, Lanni C 1990 J. Vac. Sci. Technol., A 8 2856Google Scholar

    [15]

    Hseuh H, Cui X 1989 J. Vac. Sci. Technol., A 7 2418Google Scholar

    [16]

    Gröbner O 1999 CAS-CERN Accelerator School: Vacuum Technology Snekersten, Denmark, May 28–Jun 3, 1999 p127

    [17]

    Baglin V, Collins I R, Gröbner O, Grünhagel C, Jenninger B 2002 Vacuum 67 421Google Scholar

    [18]

    Malyshev O B 2012 Vacuum 86 1669Google Scholar

    [19]

    Bellafont I, Mether L, Kersevan R, Malyshev O B, Baglin V, Chiggiato P, Pérez F 2020 Phys. Rev. Accel. Beams 23 043201Google Scholar

    [20]

    Perez Rodriguez F J, Garion C, Chiggiato P, Fernandez Topham J 2017 Preliminary Beam Screen and Beam Pipe Engineering Design: Deliverable D4.3 (Geneva, CERN, CERN-ACC-2019-0023 [R])

    [21]

    Gan P P, Fu Q, Li H P, Liu Y D, Lu Y R, Tang J Y, Xu Q J, Zhu K 2017 the 8th International Particle Accelerator Conference (IPAC'17) Copenhagen, Denmark, May 14−19, 2017 p2974

    [22]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670Google Scholar

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670Google Scholar

    [23]

    Anashin V V, Malyshev O B, Collins I R, Gröbner O 2001 Vacuum 60 15Google Scholar

    [24]

    Collins I R, Malyshev O 2001 Dynamic Gas Density in the LHC Interaction Regions 1&5 and 2&8 for Optics version 6.3 (Geneva, CERN, LHC-PROJECT-NOTE-274 [R])

    [25]

    Anashin V V, Malyshev O B, Osipov V N, Maslennikov I L, Turner W C 1994 J. Vac. Sci. Technol., A 12 2917Google Scholar

    [26]

    Malyshev O B 2020 Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems (USA: John Wiley & Sons) p96

    [27]

    Billy J C, Bojon J P, Henrist B, Hilleret N, Jimenez M J, Laugier I, Strubin P 2001 Vacuum 60 183Google Scholar

    [28]

    Andritschky M, Gröbner O, Mathewson A, Schumann F, Strubin P, Souchet R 1988 Vacuum 38 933Google Scholar

    [29]

    Gröbner O, Calder R 1973 IEEE Trans. Nucl. Sci. 20 760Google Scholar

    [30]

    Malyshev O B, Rossi A 1999 Ion desorption stability in the LHC (Geneva, CERN, VACUUM-TECHNICAL-NOTE-99-20 [R])

    [31]

    Anashin V V, Malyshev O B, Calder R, Gröbner O, Mathewson A G 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 405 258Google Scholar

    [32]

    Bellafont I, Mether L, Kersevan R 2019 the 10th International Particle Accelerator Conference (IPAC'19) Melbourne, Australia, May 19−24, 2019 TUPMP038

    [33]

    Baglin V, Grünhagel C, Collins I R, Gröbner O, Jenninger B 2002 Synchrotron Radiation Studies of the LHC Dipole Beam Screen with COLDEX (Geneva, CERN, LHC-Project-Report-584 [R])

    [34]

    Baglin V, Collins I R, Grünhagel C, Gröbner O, Jenninger B 2000 First Results from COLDEX Applicable to the LHC Cryogenic Vacuum System (Geneva, CERN, LHC-Project-Report-435 [R])

    [35]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J M 2011 Synchrotron Radiation in the LHC Vacuum System (Geneva, CERN, CERN-ATS-2011-245 [R])

    [36]

    Rathjen C 2002 Mechanical Behaviour of Vacuum Chambers and Beam Screens under Quench Conditions in Dipole and Quadrupole Fields (Geneva, CERN, LHC-Project-Report-582 [R])

    [37]

    Malyshev O B, Scott D, Bailey I, Barber D, Baynham E, Bradshaw T, Brummitt A, Carr S, Clarke J, Cooke P 2007 J. Vac. Sci. Technol., A 25 791Google Scholar

    [38]

    Calder R, Gröbner O, Mathewson A G, Anashin V, Dranichnikov A, Malyshev O B 1996 J. Vac. Sci. Technol., A 14 2618Google Scholar

    [39]

    Spallino L, Angelucci M, Larciprete R, Cimino R 2019 Appl. Phys. Lett. 114 153103Google Scholar

    [40]

    Anashin V V, Derevyankin G, Dudnikov V, Malyshev O B, Osipov V, Foerster C, Jacobsen F, Ruckman M, Strongin M, Kersevan R 1994 J. Vac. Sci. Technol., A 12 1663Google Scholar

    [41]

    La Francesca E, Angelucci M, Liedl A, Spallino L, Gonzalez L A, Bellafont I, Siewert F, Sertsu M G, Sokolov A, Schäfers F, Cimino R 2020 Phys. Rev. Accel. Beams 23 083101Google Scholar

    [42]

    Alamgir M K, Ikram M, Mughal G H, Asghar G, ur Rehman S, Qaseem S, Kamran M, Ullah A, Khan S 2019 J. Korean Phys. Soc. 75 373Google Scholar

    [43]

    Anashin V V, Collins I R, Dostovalov R V, Fedorov N V, Krasnov A A, Malyshev O B, Ruzinov V L 2004 Vacuum 75 155Google Scholar

    [44]

    Širvinskaitė R, Malyshev O B, Valizadeh R, Hannah A, Cropper M D 2020 Vacuum 179 109510Google Scholar

    [45]

    Ady M 2016 Monte Carlo Simulations of ultra High Vacuum and Synchrotron Radiation for Particle Accelerators (Lausanne, EPFL, BEL-EPFL-Thesis7063-7 [R])

    [46]

    Malyshev O B, Smith A, Valizadeh R, Hannah A 2010 J. Vac. Sci. Technol., A 28 1215Google Scholar

    [47]

    Chiggiato P, Costa Pinto P 2006 Thin Solid Films 515 382Google Scholar

  • [1] 华津宇, 盛政明. 电子束尾波对质子束自调制尾波相速度影响的理论和数值模拟研究. 物理学报, 2021, 70(13): 139401. doi: 10.7498/aps.70.20202086
    [2] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [3] 范佳锟, 王洁, 高勇, 游志明, 王盛, 张静, 胡耀程, 许章炼, 王斌. 超级质子-质子对撞机中束流热屏的热-结构耦合模拟分析. 物理学报, 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [4] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法. 物理学报, 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [5] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [6] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [7] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [8] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [10] 金远伟, 王娅冰, 顾斌, 赵蕾, 张效信. 低能质子环束流与等离子体相互作用过程的一维混合模拟研究. 物理学报, 2015, 64(10): 105203. doi: 10.7498/aps.64.105203
    [11] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [12] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究. 物理学报, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [13] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究. 物理学报, 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [14] 余金清, 周维民, 金晓林, 李斌, 赵宗清, 曹磊峰, 董克攻, 刘东晓, 范伟, 魏来, 闫永宏, 钱凤, 杨祖华, 洪伟, 谷渝秋. 鞘场加速机理中质子束的特性与其初始尺寸的关系. 物理学报, 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [15] 张鹏飞, 李刚, 张玉驰, 杨榕灿, 郭龑强, 王军民, 张天才. 光致原子解吸附对冷原子磁光阱装载的动力学研究. 物理学报, 2010, 59(9): 6423-6429. doi: 10.7498/aps.59.6423
    [16] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [17] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法. 物理学报, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [18] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究. 物理学报, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [19] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
计量
  • 文章访问数:  787
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

超级质子-质子对撞机束屏内气体密度演化规律研究

  • 西安交通大学能源与动力工程学院, 陕西省先进核能技术重点实验室&陕西省先进核能工程研究中心, 西安 710049
  • 通信作者: 王洁, wangjie1@xjtu.edu.cn ; 王盛, shengwang@xjtu.edu.cn
    基金项目: 国家自然科学基金青年科学基金(批准号: 11905170)、中央高校基本科研业务费专项资金(批准号: XJH012019018)、陕西省自然科学基金青年科学基金(批准号: 2020JQ-001)、中国博士后科学基金(批准号: 2018M643667)、陕西省博士后科学基金(批准号: 2018BSHEDZZ05)、中国核工业集团有限公司领创科研项目、国家自然科学基金(批准号: 11775166)和广东省基础与应用基础研究基金(批准号: 2020B1515120035)

摘要: 真空稳定性问题是粒子加速器设计中的关键问题之一, 对高能量的超级质子-质子对撞机而言更是如此. 质子束流在弯转区产生的同步辐射将会引起束屏壁面吸附的气体分子发生解吸和裂解, 从而引发真空不稳定问题, 导致束流品质和寿命的降低, 甚至引起束流的崩溃. 本文通过建立超级质子-质子对撞机束屏内的气体动态模型, 首次计算分析了束屏内气体密度随束流运行时间的演化规律, 并探究了将非蒸散型吸气剂涂层应用于束屏设计的优化方案. 结果表明: H2是束屏内的主要解吸气体, 其次是CO, 而CO2和CH4分子密度被分子裂解所限制. 束屏内最高气体密度出现在运行初期, 气体密度随时间呈下降趋势. 考虑到非蒸散型吸气剂涂层具有强化吸附降低解吸的特性, 讨论了不锈钢镀TiZrV涂层的束屏方案, 计算得到最高等效H2密度相比不锈钢镀铜降低接近两个数量级. 计算结果定性地反映束流运行过程中束屏内的动态真空演化情况, 可为真空系统设计提供参考.

English Abstract

    • 2012年, 欧洲核子研究中心 (european organization for nuclear research, CERN)研究人员在大型强子对撞机(large hadron collider, LHC)上发现希格斯玻色子[1-3], 这一发现为基础物理的研究开辟了新方向. 为精确测量希格斯玻色子, 探寻超越标准模型的“新物理”, 国际上陆续提出建设能量更高的大型科学装置计划, 如日本的国际直线对撞机(international linear collider, ILC)[4]、欧洲的未来环形对撞机(future circular collider, FCC)[5]及中国的环形正负电子对撞机-超级质子对撞机(circular electron positron collider -super proton proton collider, CEPC-SPPC)[6].

      SPPC是中国高能物理学家们提出的CEPC-SPPC项目的第二阶段, 其与LHC, FCC-hh(the future circular hadron collider)[7]的主要参数对比如表1所列. 根据设计目标, SPPC同步辐射(synchrotron radiation, SR)线功率密度将高达12.8 W/m, 远高于目前LHC的0.22 W/m. 同步辐射光会导致加速器束流管壁H2, CH4, CO2和CO等气体分子的大量解吸[10], 同时使部分CH4和CO2分子发生裂解[11], 产生H2, CO和O2分子. 残余气体分子增加引起不可控的压力上升及真空不稳定性问题. 质子束流与这些游离在束流管道内的气体分子发生碰撞和散射, 可能引起束流的损耗, 降低束流质量和寿命, 甚至直接导致束流的崩溃. 为缓解同步辐射引起的热负载和真空不稳定性问题, 通常在束流管道内设置一个同轴的多孔环形束屏(beam screen)[8,12], 以屏蔽同步辐射, 达到拦截热负载和降低气体解吸目的.

      主要参数LHC[8]FCC-hh[7,9]SPPC[6]
      质心系能量/TeV1410075
      环周长/km28100100
      二极磁场强度 B/T8.31612
      束流电流 I/mA580500730
      SR线功率密度 P/(W·m–1)0.2235.412.8
      临界光子能量 $ {\varepsilon }_{\rm{c}} $/eV4442691814
      光子通量密度 Γ/(m-1·s–1)10171.7 × 10171.8 × 1017

      表 1  SPPC, LHC与FCC-hh主要参数对比

      Table 1.  Main parameters of SPPC, LHC and FCC-hh.

      探究并预测粒子加速器的束流真空状态对加速器真空设计和缓解真空不稳定性具有重要意义. 国际上美国国家同步辐射光源(national synchrotron light source, NSLS)、CERN、日本高能加速器研究机构(high energy accelerator research organization, KEK)、法国电磁辐射应用实验室(laboratoire pour l'Utilisation du rayonnement electromagnétique, LURE)和俄罗斯布德克核物理研究所(Budker institute of nuclear physics, BINP)等机构都针对加速器束流真空进行过一系列实验探究, 包括不同材料的气体解吸效应[13]、材料处理方法对气体解吸的影响[14,15]、光子临界能量的影响[16]以及温度的影响[17]等, 初步形成了可靠的动态真空理论[18,19], 并对可能的真空改进方案进行了探索[9,20]. 国内对SPPC的预研工作中含有束屏设计的研究[21,22], 但对于束屏内动态真空的探究鲜有提及.

      本文使用一维扩散模型分析了SPPC束屏内的同步辐射致气体解吸及裂解过程, 得到束屏内气体密度随运行时间的演化情况, 并探究了将非蒸散型吸气剂(non evaporable getter, NEG)涂层应用于束屏设计对动态气体密度的影响.

    • 粒子加速器束屏内的真空度直接影响束流品质和束流寿命, 为保证SPPC 100 h束流寿命的设计要求, H2体密度需要小于1015 molecules/m3[6]. 考虑到CH4, CO2, CO和O2等重分子的存在, 根据核散射截面将几种重分子的体密度等效为H2体密度, 总等效H2密度neq表示为[23,24]

      $\begin{split} {n_{{\rm{eq}}}} =\;& n({{\rm{H}}_2}) + 5.4n({\rm{C}}{{\rm{H}}_4}) + 12.2n({\rm{C}}{{\rm{O}}_2}) \\ &+ 7.8n({\rm{CO}}) + 10n({{\rm{O}}_2}). \end{split}$

      束流寿命限制转化为总等效H2密度neq小于1015 molecules/m3. 粒子加速器真空束屏内的残余气体来源主要有热解吸、光子致解吸、电子致解吸、离子致解吸以及气体分子的裂解.

    • 所有置于真空环境中的材料都会自发解吸出气体分子, 直至达到吸附脱附平衡[25]. 热解吸速率取决于材料表面特性、清洗程序、处理方式等多种因素. 例如, 未经处理的不锈钢在抽气10 h后, 单位面积热解吸速率约为3 × 10–5 Pa·m·s–1; 而真空烧制的不锈钢在经过100 ℃烘烤60 h后, 单位面积热解吸速率低至10–11 Pa·m·s–1[26].

    • 带电粒子在通过高能加速器弯转区时产生同步辐射光, 光子辐照至束屏壁面可直接导致壁面吸附分子的解吸, 也可能发生光子散射、光电效应、康普顿散射和电子对效应[27], 产生的散射光子和电子间接激发气体分子解吸. 其中, 光子直接致解吸占比微不足道, 次级电子致解吸是主要气体来源[26-28]. 光子致解吸过程根据气体分子吸附形式可分为一次光子致解吸和二次光子致解吸:

      束屏经过烘烤抽气后仍有部分气体分子依靠化学键作用吸附在低温表面, 这部分化学吸附分子受光子诱导而解吸称为一次光子致解吸. 一次解吸气体分子在低温下部分冷凝, 依靠物理吸附作用保持在壁面, 结合相对松散, 且仍受到光子辐照, 容易再次解吸, 这部分物理吸附分子的解吸称为二次光子致解吸[11,23].

    • 束屏内电子轰击管壁, 致使表面气体分子解吸的过程称为电子致解吸, 是光子致解吸过程的一部分. 束屏内电子的产生率直接影响电子致解吸过程, 因此, 从表面材料入手降低光电子和二次电子产额, 是减少电子致解吸最为直接有效的方式.

    • 离子致解吸问题最早在1971年交叉碰撞储存环(intersecting storage rings, ISR)引起学者们的关注[29]. 束屏内的高能质子引起残余气体分子电离, 产生的离子在束流空间电荷的加速作用下, 轰击束屏壁面, 并导致壁面吸附的气体分子发生解吸[30].

    • 低温真空束屏内的主要解吸气体为: H2, CH4, CO2和CO, 其中CH4和CO2与同步辐射光作用发生裂解[31], 过程如下:

      $\left\{ {\begin{aligned} &{{\rm{C}}{{\rm{H}}_4} + {\rm{\gamma }} \to {\rm{C}} + 2{{\rm{H}}_{\rm{2}}},}\\ &{2{\rm{C}}{{\rm{O}}_2} + {\rm{\gamma }} \to {\rm{2CO}} + {{\rm{O}}_{\rm{2}}}.} \end{aligned}} \right. $

      一般束屏内CO2分子多于CH4分子, 上述裂解过程可整合为[23]

      $\begin{split} &{k_1}{\rm{C}}{{\rm{H}}_4} + {k_2}{\rm{C}}{{\rm{O}}_2} + {\rm{\gamma }} \to \\ & 2{k_1}{{\rm{H}}_2} + ({k_1} + {k_2}){\rm{CO}} + ({k_2}/2 - {k_1}){{\rm{O}}_2}. \end{split}$

      H2, CO和O2分子数量因裂解而增加, CH4和CO2分子数量因裂解而减少, 裂解过程对束屏内的气体动态变化有重要影响.

      SPPC真空束屏需经过烘烤清洗抽气系列程序后投入使用, 被液氦所冷却, 工作在低温环境下. 因此, 上述气体来源中的热解吸过程可以忽略[18]. 光子致解吸过程约占所有粒子轰击致解吸的90%[32], 故光子致解吸和分子裂解是影响低温真空束屏内气体密度的主要因素, 本文对SPPC束屏内气体密度的动态分析只考虑这两个过程.

    • 考虑光子致解吸和分子裂解过程, 粒子加速器低温真空系统内不同种类气体的动态平衡方程可写成[11,23]:

      $\begin{split} V\frac{{\partial {n_i}}}{{\partial t}} =\;& {\eta _i}\varGamma + {\eta _i'}({s_i})\varGamma + {\chi _i}({s_j})\varGamma \\ &- {\alpha _i}{S_i}{n_i} - {C_i}{n_i} + u\frac{{{\partial ^2}{n_i}}}{{\partial {z^2}}}, \end{split}$

      $A\frac{{\partial {s_i}}}{{\partial t}} = {\alpha _i}{S_i}{n_i} - {\eta _i'}({s_i})\varGamma - {\kappa _{i \to k + m}}({s_i})\varGamma ,$

      其中i表示气体种类; ${\kappa _{i \to k + m}}({s_i})$是气体i的裂解系数, 即每个光子导致i分子裂解的量; ${\chi _i}({s_j})$j分子裂解产生i分子的裂解产额, 即每个光子导致j分子裂解, 最终产生i分子的量; $u\dfrac{{{\partial ^2}{n_i}}}{{\partial {z^2}}}$是轴向扩散项, 取决于与管端抽气泵的距离, 束流弯转区内唯一的抽气作用来自于冷管的低温抽气, 系统两端气体流动忽略不计, 轴向扩散项可以忽略. 因而, 在准静态($ V\partial {n}_{i}/\partial t\approx 0$$ A\partial {s}_{i}/\partial t\ne 0$)下, 每种气体分子的体密度${n_i}$和表面密度${s_i}$可以表示为

      ${n_i} = \frac{{{\eta _i} + {\eta _i'}({s_i}) + {\chi _i}({s_j})}}{{{\alpha _i}{S_i} + {C_i}}}\varGamma ,$

      $\begin{split} {s_i}(t) = \;&{s_i}(0) + \frac{1}{A}\int\nolimits_{t = 0}^t [({\eta _i}(t) + {\chi _i}({s_j}(t))\\ &- {\kappa _i}({s_i}(t)))\varGamma - {C_i}{n_i}(t)] {\rm{d}}t. \end{split}$

      通过上式可以看出, 低温真空系统内的气体密度n由多个参数共同决定, 其中部分变量与表面密度s相联系. 通过确定相关参数, 求解(6)式和(7)式, 可以得到真空系统内气体体密度n随束流运行时间变化的情况, 直接反映粒子加速器管道内的真空演化状态, 为粒子加速器真空系统设计提供参考.

    • 使用Mathcad工程计算软件对上述方程组进行求解, 输入参数中: S, C, AΓ根据粒子加速器装置参数确定; η, $\eta '$, χα有多种影响因素(如材料种类、表面处理方法、工作温度、同步辐射功率等), 可通过已有实验数据总结经验公式或适当外推, 得到与装置参数相对应的值.

      为验证求解结果的准确性, 这里以欧洲核子中心在COLDEX(the cold bore experiment)装置上进行的一次束屏同步辐照实验[33]为例进行验证计算. 实验装置的同步辐射临界光子能量${\varepsilon _{\rm{c}}}{{ = }}194\;{\rm{eV}}$, 光子通量密度$\varGamma {{ = }}3.4 \times {10^{16}}\;{\rm{photons}}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}}{{)}}$, 同步辐射以11 mrad掠射角辐照开孔率1%的无氧铜束屏, 累积光子通量2.7 × 1022 photons/m, 期间实时测量束屏中心位置几种主要气体的分压, 并得到解吸产额相关参数[33,34].

      根据实验装置参数及测试参数对束屏内的动态气体密度进行计算, 并转换为气体分压, 计算结果与实验测试结果对比如图1所示. 由图1对比可以看出, 计算结果可以较准确地反映束屏内动态压力演变趋势, 但定量分析存在一定误差, 差距在2倍以内.

      图  1  COLDEX束屏内气体分压的实验测试结果与计算结果对比 (a) 实验测试结果; (b)计算结果

      Figure 1.  Comparisons of experimental results and calculated results of gas partial pressure in COLDEX beam screen: (a) Experimental test results; (b) calculated results.

      验证结果表明, 在输入参数较准确的前提下, 依据动态气体模型求解可以得到与实际情况符合较好的计算结果, 模型误差较小. 而对于尚未运行的加速器装置, 部分参数无法直接获得, 只能通过相似的实验数据总结外推得到, 因此输入参数的可靠程度是影响计算结果准确性的关键因素.

    • 同步辐射参数: 根据SPPC设计方案[6], 质子束流能量E为37.5 TeV, 束流电流I为0.73 A, 磁场强度B为12 T, 二极磁铁曲率半径ρ为10415.4 m, 弯转区域同步辐射的临界光子能量${\varepsilon _{\rm{c}}}$约1.8 keV, 同步辐射线功率密度P约12.8 W/m, 光子通量密度Γ由束流能量、束流电流和曲率半径来确定[35], 如(8)式, 约为1.84 × 1017 photons/(m·s–1).

      $\varGamma {\rm{(photons}}/({\rm{m}} \cdot {{\rm{s}}^{{{ - 1}}}}{{))}} = 7.007 \times {10^{13}}\frac{{E{\rm{(TeV)}}I({\rm{A}})}}{{\rho ({\rm{m}})}}.$

      束屏结构 以CERN针对FCC-hh提出的最新束屏设计方案[9]为计算对象, 其结构如图2所示. 方案采用双层束屏结构, 以避免同步辐射和电子直接辐照至冷管, 同时降低反射至内腔室的光子通量. 内腔室上下表面进行激光刻蚀处理, 可显著降低二次电子发射率, 缓解电子云效应. 第二腔室的同步辐射挡板采用锯齿状结构, 使同步辐射以近90°的角度入射至锯齿表面, 这一设置可提高同步辐射吸收率, 减少反射光子, 并降低光电子产额.

      图  2  FCC-hh束屏设计方案示意图[9]

      Figure 2.  FCC-hh beam screen design schematic diagram.

      束屏材料 束屏材料的选择要求阻抗不能过高, 以免束流在阻抗壁面感应出镜像电流, 引起过多欧姆耗散[12]; 需要有足够的结构强度, 以保持在强磁场下的屈服强度[20,36]; 要求光子致气体解吸产额尽量低[26]. 综合考虑, 束屏材料一般选择不锈钢, 并在内表面镀一层铜涂层. 另一种涂层材料—非蒸散型吸气剂(non evaporable getter, NEG)因具有降低热解吸和增强壁面抽气的特性, 而被广泛探究, 本文将在第7节对其进行讨论.

      束屏工作温度: 由于高功率的同步辐射, 引起高的热负载, SPPC束屏的冷却相比LHC更具挑战. 为降低冷却成本和技术难度, 束屏工作温度不应太低. 同时为避免束屏材料阻抗过高, 以及避免束屏与束流管道温差过大, 束屏工作温度不能过高[6]. 概念设计报告中将束屏工作温度区间定为40-60 K, 这里取50 K作为计算温度. 束屏开孔率取6%为计算值.

    • 一次解吸产额η与同步辐射临界光子能量的关系如图3所示, 临界能量${\varepsilon _{\rm{c}}}$小于1 keV时, 由于光电子产额随光子能量线性增加, 故η${\varepsilon _{\rm{c}}}$成正比关系; ${\varepsilon _{\rm{c}}}$处于1至100 keV之间时, 光电子产额不随光子能量增加, 因而η${\varepsilon _{\rm{c}}}$缓慢增加; ${\varepsilon _{\rm{c}}}$ > 100 keV时, 由于康普顿电子的产生, η${\varepsilon _{\rm{c}}}$仍为正比关系[18,27].

      图  3  一次解吸产额关于临界光子能量的函数[37]

      Figure 3.  Primary photon desorption yield as function of critical photon energy[37].

    • 欧洲核子中心在1996年针对LHC束屏的光子致解吸进行了实验探究, 总结出一次解吸产额η与光子累积剂量D的函数关系[38]:

      $\eta {{ = }}{\eta _0}{(D/{D_0})^\beta },$

      其中${D_0}$为初始时刻的光子累积剂量; ${\eta _0}$为对应${D_0}$的一次解吸产额; β为指数. 根据已有的实验数据, 在束屏温度T = 78 K时, 指数β ≈ 0.3[38]; 束屏温度T = 4 K时, 指数β ≈ 0.1[25]. 采用线性插值法计算出β(50 K) = 0.225.

      初始解吸产额${\eta _0}$也取决于束屏温度, 温度越高, 初始解吸产额越高. 40—60 K温度范围内的光子致解吸产额实验数据较缺乏. Baglin等[17]在COLDEX低温真空装置上探究了5—300 K温度范围内, 临界能量194 eV的光子辐照下, 无氧铜束屏表面几种气体的解吸产额. 除H2外的其他气体没有给出低于相应限制温度${T_{\rm{h}}}$下的数据(限制温度${T_{\rm{h}}}$是指气体程序解吸曲线中解吸峰对应的温度[39], 也对应气体在材料表面的吸附结合能). 实际上T < ${T_{\rm{h}}}$时, ${\eta _0}(T) < {\eta _0}({T_{\rm{h}}})$, 为了得到更保守的结果, 在T < ${T_{\rm{h}}}$范围内, 取${\eta _0}(T) = {\eta _0}({T_{\rm{h}}})$. 由此取得${\varepsilon _{\rm{c}}}$ = 194 eV, T = 50 K时各解吸气体的初始解吸产额${\eta _0}(194\;{\rm{eV}}, \;50\;{\rm{K}})$. SPPC临界光子能量${\varepsilon _{\rm{c}}}$为1.8 keV, 根据前述一次解吸产额与临界光子能量的函数关系, 可由194 eV下的实验数据估算1.8 keV时的初始解吸产额, ${\eta _0}(1.8\;{\rm{keV}}, \;50\;{\rm{K}}) \approx 6 \times $$ {\eta _0}~(194\;{\rm{eV}}, \;50\;{\rm{K}})$. 确定β${\eta _0}$后, 依据(10)式获得SPPC束屏内的一次解吸产额η与光子累积剂量D的函数关系.

    • 相关文献[40]表明二次解吸产额$\eta '$与表面密度s存在线性关系, 如下式所示:

      $\eta ' = \eta '({s_{\rm{m}}})\frac{s}{{{s_{\rm{m}}}}},$

      其中sm为单分子层吸附完成时单位面积的气体吸附量; $\eta '({s_{\rm{m}}})$为对应sm的二次解吸产额.

      Malyshev等[11]对光子的脱气效率$\eta {'_r}$进行了探究, $\eta {'_r}$即每个入射光子导致凝结气体从冷管表面脱离的分子量, 凝结气体分子以二次解吸或裂解的形式脱离冷管. 探究得到了二次解吸产额$\eta '$和裂解产额χ的上限值, 如表2所列.

      气体种类H2CH4COCO2O2
      $\eta ' _{ {\rm{r} }\;{\rm{max} } }$0.550.40.040.450.04
      $\eta '_{\rm{max} }$0.550.040.040.040.04
      $ {\kappa }_{\rm{max}} $$ {\kappa }_{{{\rm{C}}{\rm{H}}}_{4}\stackrel{}{\to }2{{\rm{H}}}_{2}+{\rm{C}}}\approx 0.36 $$ {\kappa }_{{{\rm{C}}{\rm{O}}}_{2}\stackrel{}{\to }{\rm{C}}{\rm{O}}+{\rm{O}}}\approx 0.41 $
      $ {\chi }_{\rm{max}} $$ {\chi }_{{{\rm{H}}}_{2}}\left({s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.72 $$ {\rm{\chi }}_{{\rm{C}}{\rm{O}}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}+{s}_{{{\rm{C}}{\rm{H}}}_{4}}\right)\approx 0.41+0.36 $$ {\chi }_{{{\rm{O}}}_{2}}\left({s}_{{{\rm{C}}{\rm{O}}}_{2}}\right)\approx 0.2 $

      表 2  二次解吸和裂解参数的上限值[11]

      Table 2.  Maximal values of secondary desorption and cracking parameters[11].

    • 气体在材料表面的黏附系数与气体性质, 温度, 材料特性等因素有关. Baglin等[17]通过实验得到了不同温度下, 几种气体在无氧铜表面的黏附系数. 文献中只得到各气体在温度低于相应限制温度${T_{\rm{h}}}$时的黏附系数, 依据这一实验数据, 取50 K下各解吸气体的黏附系数为: ${\alpha _{{{\rm{H}}_{\rm{2}}}}} = 0.001$, ${\alpha _{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} = $$ 0.02$, ${\alpha _{{\rm{CO}}}} = 0.004$, ${\alpha _{{\rm{C}}{{\rm{O}}_{\rm{2}}}}} = 0.08$.

    • 光子致解吸的主要过程是光电子致气体分子解吸, 解吸产额与光电子数量成正比[19]. 光电子数量Ne由光电子产额${Y_{{\rm{pe}}}}$(每个入射光子导致光电子产生的数量)及入射光子通量Γ确定[9]:

      $Ne{{ = }}\varGamma \cdot {Y_{{\rm{pe}}}}.$

      不同材料的光电子产额由实验测定, 实验中通常不考虑反射光子对光电子产额的贡献, 而在束屏的小空间内, 这一贡献不可忽略. 因此, (11)式可修正为

      $Ne{{ = }}\varGamma \cdot {Y_{{\rm{pe}}}}{{ + }}\varGamma \cdot R \cdot {Y_{{\rm{pe}}}},$

      其中R是光子入射至材料表面的反射率.

      前面5.2节和5.3节所述的光子致解吸相关实验数据来自于LHC型束屏样品, 其同步辐射挡板表面平坦, 而锯齿形挡板有着更低的同步辐射反射率R及光电子产额${Y_{{\rm{pe}}}}$, 意味着更低的气体解吸产额. 因此分析图2所示的锯齿束屏内的气体解吸时, 需要引入束屏结构修正系数λ, 对基于LHC型束屏得到的解吸及裂解参数进行修正. 根据La Francesca的实验[41], 1000 eV的光子以0.25°入射角辐照LHC型铜样品、锯齿形铜样品及激光刻蚀铜样品表面时, 反射率和光电子产额如表3所列. 这里选择1000 eV的光子作为参考, 是因为SPPC同步辐射能谱中, 光子通量主要集中在1000 eV附近. 同时考虑束屏内腔室激光刻蚀处理对二次电子产额的降低效果(${\rm{SE}}{{\rm{Y}}_{{\rm{LHC}}}} \approx 1.4$, ${\rm{SE}}{{\rm{Y}}_{{\rm{LASE}}}} \approx 1$)[19], 修正系数λ可近似表示为(13)式, 取为0.14.

      样品类型反射率R光电子产额${Y_{{\rm{pe}}}}$
      LHC型铜样品(LHC)0.750.25
      锯齿形铜样品(ST)0.070.08
      激光刻蚀铜样品(LASE)0.0060.09

      表 3  LHC型铜样品、锯齿形铜样品及激光刻蚀铜样品的光子反射率及光电子产额[41]

      Table 3.  Photon reflectivity and photoelectron yield of LHC type samples, sawtooth copper samples and laser treated copper samples[41]

      $\lambda \approx \frac{{({Y_{{\rm{pe}}\text{-}{\rm{ST}}}} + {R_{\rm ST}} \cdot {Y_{{\rm{pe}} \text{-} {\rm{LASE}}}}) \cdot {\rm{SE}}{{\rm{Y}}_{{\rm{LASE}}}}}}{{({Y_{{\rm{pe}} \text{-} {\rm{LHC}}}} + {R_{{\rm{LHC}}}} \cdot {Y_{{\rm{pe}} \text{-} {\rm{LHC}}}}) \cdot {\rm{SE}}{{\rm{Y}}_{{\rm{LHC}}}}}}.$

    • 依据前述气体动态模型及相关参数, 计算了SPPC不锈钢镀铜的锯齿束屏在工作温度为50 K时, 光子剂量累积至2 × 1024 photons/m, 即连续运行约120 day过程中, 束屏内主要气体的密度演化情况.

      计算得到的50 K下几种主要气体的动态演化曲线如图4所示. 图4(a)是H2, CH4, CO, CO2和O2的体密度n及等效H2密度neq随累积光子剂量D演化的动态过程. 由图4(a)可以看出, 束屏内H2是主要解吸气体, 其次是CO和CO2. 等效H2密度最高值出现在束流运行初期, 约2.5 × 1014 molecules/m3, 持续运行约120 day后, 等效H2密度降低至3 × 1013 molecules/m3.

      图  4  镀铜涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额 η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

      Figure 4.  (a) The gas density n, (b) primary photodesorption yieldη and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a copper coated stainless steel beam screen.

      图4(b)是一次解吸产额η与光子累计剂量D的函数关系. 一次解吸产额呈现随时间降低趋势, 是由于随着束流运行, 束屏表面吸附的气体分子逐步解吸, 残余吸附分子逐渐减少, 相当于“清洗”过程, 致使一次解吸产额降低. 一次解吸产额的降低加上抽气作用, 使束屏内各解吸气体的分子量逐步减少, 故图4(a)中各解吸气体的密度曲线总体呈现下降趋势. 其中, CO气体密度下降曲线在光子剂量达到4 × 1021 photons/m后, 出现一段上升趋势, 是由于CO二次解吸产额随时间增加, 同时CH4和CO2的裂解产生CO, 这两个过程致使CO分子密度的下降趋势减缓乃至有所升高, 而后由于裂解产额减少, 曲线回归下降趋势.

      图4(c)是二次解吸产额$\eta '$与光子累计剂量D的函数关系. CH4和CO2分子的二次解吸产额初始随时间增加, 光子剂量达到2 × 1022 photons/m后, 由于裂解作用, 转而呈现下降趋势. 而H2分子由于含量最高且黏附系数最小, 受抽气作用影响最为显著, 故H2二次解吸产额始终随光子剂量累积而降低. O2分子作为气体分子裂解过程的产物之一, 图4(a)中分子密度和图4(c)中二次解吸产额皆随时间增加, 并随着裂解源—CO2分子的减少, 上升趋势逐渐平缓.

    • 国内外对Ti基[42,43]和Zr基[44]等多种非蒸散型吸气剂(NEG)涂层的真空性能进行过诸多探究, NEG经过高温激活后, 表现出优秀的吸附能力和降低气体解吸特性, 理论上是粒子加速器高真空或超高真空系统的良好材料. 下面讨论图2所示锯齿束屏的内表面镀TiZrV涂层以取代铜涂层对动态气体密度的影响.

      Ady[45]通过在日本高能加速器研究机构(high energy accelerator research organization, KEK)的光子辐照实验, 获得了室温条件下, TiZrV涂层经受临界能量4 keV光子辐照过程中的光致一次解吸产额. 由于尚缺低温条件下的NEG涂层解吸实验, 此处将束屏工作温度下的一次解吸产额保守取为室温值$\eta ({\rm{RT}})$. 结合粘附系数α的实验数据[43,46,47], 并考虑锯齿形束屏的反射率修正, 可计算SPPC采用内表面镀TiZrV的锯齿束屏时, 连续运行约120 day过程中, 束屏内的气体动态演化情况, 如图5所示.

      图  5  镀TiZrV涂层的不锈钢束屏内 (a) 气体体密度n; (b) 一次解吸产额η; (c) 二次解吸产额$\eta '$随光子累积剂量D演化的规律

      Figure 5.  (a) The gas density n, (b) primary photodesorption yield η and (c) secondary photodesorption yield $\eta '$ as function of accumulated photon dose D in a TiZrV coated stainless steel beam screen.

      图5各曲线整体变化趋势与图4近似, 但气体密度和解吸产额相比图4低一至两个数量级. 图5(a)中, 等效H2气体密度最高值出现在束流运行初期, 约3 × 1012 molecules/m3, 远低于束流寿命限值1015 molecules/m3, 随光子剂量累积, 等效H2密度持续下降, 累计至2 × 1024 photons/m时, 等效H2密度降至约7 × 1011 molecules/m3. 值得注意的是, 由于TiZrV涂层对CO气体的黏附系数α相比铜对CO较高, 具有更高的重吸附概率, 致使CO二次解吸产额相对更高(如图5(c)), 故而图5(a)中CO体密度在累计剂量达到1 × 1023 photons/m后略有回升.

    • 本文考虑SPPC束屏内同步辐射光致气体解吸和气体分子裂解过程, 建立了动态气体模型, 并验证了该模型用于加速器束流真空分析的可行性. 结合已有实验数据, 计算分析了SPPC束屏内残余气体密度在120 day低温运行过程中的演化情况, 得到了加速器束屏内真空状态的演化规律. 并从真空度角度讨论了TiZrV涂层应用于SPPC束屏的吸气作用. 结论如下:

      1) H2是SPPC束屏内的主要解吸气体, 其次是CO, 而CO2和CH4分子密度被裂解作用所限制, H2和CO是材料除气处理的首要对象;

      2) 束屏内最高气体密度出现在运行初期, 气体密度随时间呈下降趋势, 真空系统设计中需重点考虑束流运行初期的真空度;

      3) 束屏采用不锈钢镀TiZrV材料时, 最高等效H2密度相比镀铜材料降低近2个数量级, 表明TiZrV涂层能有效减少束屏内残余气体, 在保证SPPC束流稳定运行所需真空条件方面可以发挥重要作用. 综合考虑阻抗的影响, TiZrV涂层局部应用于束屏内表面, 如锯齿形辐射挡板, 其余表面仍采用铜涂层, 是一种值得进一步探究的方案.

      本文计算结果定性反映SPPC束流运行过程中束屏内动态真空演化情况, 可为真空系统设计提供参考. 由于部分参数缺少实验数据, 因此, 采用外推方法得到. 参数选取存在一定误差, 反映到结果中, 偏差可能达到1个数量级. 故本文的定量结果在设计初期具有一定参考价值, 使用时需要留足裕量, 在设计后期则需要更可靠的实验数据以获得更精准的结果.

      感谢英国达斯伯里实验室Malyshev O B 教授对本文建立气体动态模型提供的帮助.

      术语
      A (cm2) 真空腔室轴向单位长度壁面面积
      $u = {A_{\rm{c}}}{D_{\rm{k}}}$(cm4/s) 轴向单位长度真空流导
      ${A_{\rm{c}}}$(cm2) 真空腔室横截面积
      V (cm3) 真空腔室体积
      $C = \rho {k_{\rm{t}}}S$ (cm3/s) 束屏孔的抽气速率
      v (cm/s) 平均分子速率
      ${D_{\rm{k}}}$(cm2/s) 努森扩散系数
      α 分子在壁面的黏附系数
      ${k_{\rm{t}}}$ 束屏开孔率(束屏抽气孔面积与束屏表面积之比)
      Γ (photons/(s·m)) 光子通量密度
      n (molecules/cm3) 气体体密度
      η (molecules/photon) 一次解吸产额
      $S = Av/4$(cm3/s) 壁面理想抽气速率
      $\eta '$(molecules/photon) 二次解吸产额
      s (molecules/cm2) 气体表面密度
      ρ 束屏孔的克劳辛系数
参考文献 (47)

目录

    /

    返回文章
    返回