搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压等离子体对柔性多孔材料表面处理均匀性的研究进展

徐雨 王超梁 覃思成 张宇 何涛 郭颖 丁可 张钰如 杨唯 石建军 杜诚然 张菁

引用本文:
Citation:

常压等离子体对柔性多孔材料表面处理均匀性的研究进展

徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁

Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review

Xu Yu, Wang Chao-Liang, Qin Si-Cheng, Zhang Yu, He Tao, Guo Ying, Ding Ke, Zhang Yu-Ru, Yang Wei, Shi Jian-Jun, Du Cheng-Ran, Zhang Jing
PDF
HTML
导出引用
  • 柔性多孔材料在当今众多前沿科学与技术领域发挥着重要作用, 其表面改性将进一步赋予其多样和优异的表面性能, 拓展其在功能和智能可穿戴等领域的应用. 常压等离子体技术由于低温、低能耗、高效、环保、低成本、不改变材料本体特性、易于实现卷对卷制备等优势, 在应用环境、样品材料选择上展现出良好的适应性, 在低熔点柔性材料大面积低成本表面处理方面具有很好的应用前景和研究价值. 本文综述了近年来常压等离子体柔性多孔材料表面改性的几个实例及在新材料、新能源、环保、生物医学中的应用. 探讨了柔性多孔材料常压等离子体均匀处理所遇到的稳定性及渗透性的问题与挑战. 综述了本课题组在常压等离子体稳定放电、卷对卷常压等离子体多孔介质处理及内部渗透性和均匀性方面的研究工作, 介绍了本课题组在常压等离子体纳米颗粒膜沉积动力学及膜结构调控方面的突破和思路. 常压等离子体柔性多孔介质表面处理技术走向应用仍然存在诸多挑战, 需要结合常压等离子体的放电方式及特性、处理材料的结构及加工特性、等离子体和材料的相互作用等来进行综合考虑, 才能提供合理可行的解决方案.
    Flexible porous materials play an important role in frontier science and technology fields. Surface modification will further endow the materials with diverse and excellent surface properties, and expand the scope of their applications in functional and intelligent wearable devices. Atmospheric pressure plasma technology has many advantages in treating the flexible materials, such as low temperature, low energy consumption, high efficiency, friendly environment, low cost, no change in material itself characteristics, suitability for roll-to-roll preparation, etc. Also, it presents good adaptability in applied environment and target materials. All these advantages meet the requirements of large area and low-cost surface modification of flexible porous materials.In this paper, we review several researches of atmospheric pressure plasma surface modification of flexible porous materials used in advanced materials, new energy, environmental protection and biomedicine. The problems and challenges of stability and permeability encountered in uniformly treating the flexible and porous materials by atmospheric pressure plasma are presented. Then, we introduce our research work on atmospheric pressure plasma stable discharge, roll-to-roll coating treatment of permeability and uniformity. Finally, we introduce the breakthrough in and ideas on the deposition kinetics of nanoparticle thin films and their microstructure control by atmospheric pressure plasma. However, there are still many challenges to be overcome in the applications of the methods in current situation. Basic characteristics, discharge modes of atmospheric pressure plasma and the relationships of plasma discharge to structure and property of the various treated materials need to be further explored. It is confirmed that the permeability and uniformity of the atmospheric pressure plasma treatment in flexible porous materials are very important and their in-depth investigations will promote the application of this method—a high efficient, environmentally-friendly and continuous way of realizing functional and intelligent wearable devices in the future.
      通信作者: 张菁, jingzh@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075054)和中央高校基本科研业务费专项资金(批准号: 2232019A3-12)资助的课题
      Corresponding author: Zhang Jing, jingzh@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075054) and the Fundamental Research Funds for Central Universities, China (Grant No. 2232019A3-12)
    [1]

    Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128

    [2]

    Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar

    [3]

    Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar

    [4]

    Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar

    [5]

    Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar

    [6]

    Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar

    [7]

    Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar

    [8]

    Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar

    [9]

    Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar

    [10]

    Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar

    [11]

    NFPA 1999 Standard on Protective Clothing for Emergency Medical Operation (Quincy: National Fire Protection Association)

    [12]

    Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar

    [13]

    Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar

    [14]

    Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar

    [15]

    Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar

    [16]

    Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar

    [17]

    Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar

    [18]

    Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar

    [19]

    Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar

    [20]

    Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar

    [21]

    Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar

    [22]

    Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar

    [23]

    Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar

    [24]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [25]

    Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar

    [26]

    Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379

    [27]

    Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar

    [28]

    Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar

    [29]

    Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar

    [30]

    Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar

    [31]

    Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar

    [32]

    Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar

    [33]

    张杰 2016 博士学位论文 (上海: 东华大学)]

    Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[

    [34]

    张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar

    Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar

    [35]

    Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar

    [36]

    Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar

    [37]

    Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar

    [38]

    Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar

    [39]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar

    [40]

    Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar

    [41]

    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar

    [42]

    Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar

    [43]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar

    [44]

    Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar

    [45]

    Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar

    [46]

    Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)

    [47]

    李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar

    Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar

    [48]

    Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar

    [49]

    Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar

    [50]

    Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar

    [51]

    Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar

  • 图 1  (a) DCSBD电极系统; (b) 在开放环境下的一次“H”型微放电; (c) 在开放环境下300 W表面等离子体; 不同样品上印刷PLLA纳米颗粒的扫描电子显微镜照片, 其中(d)—(g)分别为(d) 未经处理的PET, (e) 未经处理的PP, (f) 经等离子体处理的PET, (g) 经等离子体处理的PP[8]

    Fig. 1.  (a) DCSBD electrode system; (b) one H-shaped micro-discharge in ambient air; (c) surface plasma in ambient air at 300 W; scanning electron microscope images of PLLA nanoparticles printed on (d) untreated PET, (e) untreated PP, (f) plasma treated PET, and (g) plasma-treated PP[8].

    图 2  未经处理的MFC泡沫与(a)水或(b)煤油的相互作用; 等离子体处理的MFC泡沫(占气隙体积的一部分)与水和煤油在(c) MFC泡沫顶部和(d)底部的相互作用[9]

    Fig. 2.  Interaction of untreated MFC foam with either (a) water or (b) kerosene. Interaction of plasma-treated MFC foam (taking up a portion of the gas gap volume) with water and kerosene on (c) the top side and (d) the bottom side of the MFC foam[9].

    图 3  (a) α模式和(b) γ模式放电光学照片; (c) 不同调制脉冲占空比时大气压射频辉光放电的电流-电压特性[34]

    Fig. 3.  Photographs of discharge (a) α mode and (b) γ mode; (c) current-voltage characteristics of pulse-modulated RF APGDs with different duty cycle[34].

    图 4  (a) 常压脉冲放电辅助脉冲调制射频辉光放电电流电压特性; 脉冲放电和射频放电段时间间隔为(b) 40和 (c) 10 μs时, 射频起辉阶段的空间结构分布随延时的变化[35]

    Fig. 4.  (a) Current voltage characteristics of RF discharge burst with (dash) and without (solid) pulsed discharge in pulse modulated RF APGD; temporal evolution of discharge spatial profile during RF discharge burst ignition with the time interval between pulsed discharge and RF discharge burst of (b) 40 and (c) 10 μs[35].

    图 5  氦气20 kV连续放电下, 电势在不同微孔直径大小中的分布 (a) 10 μm; (b) 20 μm; (c) 200 μm, 其中图的横纵坐标为微孔的几何尺寸, 右侧颜色条为电势大小, 单位(V)

    Fig. 5.  Distributions of the potential for different pore sizes of (a) 10 μm, (b) 20 μm, (c) 200 μm, for a helium discharge sustained at 20 kV.

    图 6  柔性微孔介质等离子体沉积模型示意图

    Fig. 6.  Schematic diagram of plasma deposition model for flexible microporous substrate.

    图 7  UHMWPE隔膜截面的扫描电子显微镜(SEM), EDS及元素浓度分布 (a)−(c) SiO2.01C0.23Hx纳米颗粒膜涂层; (d)−(f) Al2O3纳米颗粒膜涂层[51]

    Fig. 7.  Cross-section scanning electron microscope (SEM) images and EDS of UHMWPE: (a)−(c) SiO2.01C0.23Hx coating; (d)−(f) Al2O3 coating[50].

    图 8  (a) 不同涂层样品的黏附强度; (b) 180° 剥离试验后的隔膜和胶带的光学照片[51]

    Fig. 8.  (a) Adhesion strengths of different coating samples; (b) the optical photo of the separators and tapes after the 180° peel-off test[51].

    图 9  (a) 50% 占空比时鞘层悬浮颗粒随关闭时间的变化; (b) 不同占空比时纳米颗粒薄膜的粒径分布; 不同占空比时沉积纳米颗粒膜的FE-SEM图像, (c)—(d)图对应的占空比分别为(c) 33%, (d) 50%, (e) 67%[26]

    Fig. 9.  (a) Motion of sheath trapped particles with 50% duty cycle; (b) particle size distribution of nanoparticle films at different duty cycles; FE-SEM images of deposited nanoparticle films at different duty cycles of (c) 33%, (d) 50%, (e) 67%[26].

  • [1]

    Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128

    [2]

    Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar

    [3]

    Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar

    [4]

    Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar

    [5]

    Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar

    [6]

    Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar

    [7]

    Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar

    [8]

    Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar

    [9]

    Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar

    [10]

    Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar

    [11]

    NFPA 1999 Standard on Protective Clothing for Emergency Medical Operation (Quincy: National Fire Protection Association)

    [12]

    Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar

    [13]

    Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar

    [14]

    Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar

    [15]

    Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar

    [16]

    Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar

    [17]

    Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar

    [18]

    Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar

    [19]

    Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar

    [20]

    Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar

    [21]

    Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar

    [22]

    Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar

    [23]

    Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar

    [24]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [25]

    Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar

    [26]

    Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379

    [27]

    Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar

    [28]

    Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar

    [29]

    Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar

    [30]

    Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar

    [31]

    Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar

    [32]

    Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar

    [33]

    张杰 2016 博士学位论文 (上海: 东华大学)]

    Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[

    [34]

    张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar

    Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar

    [35]

    Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar

    [36]

    Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar

    [37]

    Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar

    [38]

    Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar

    [39]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar

    [40]

    Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar

    [41]

    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar

    [42]

    Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar

    [43]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar

    [44]

    Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar

    [45]

    Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar

    [46]

    Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)

    [47]

    李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar

    Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar

    [48]

    Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar

    [49]

    Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar

    [50]

    Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar

    [51]

    Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar

  • [1] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展. 物理学报, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [2] 等离子体物理及其材料处理专题编者按. 物理学报, 2021, 70(9): 090101. doi: 10.7498/aps.70.090101
    [3] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [5] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化. 物理学报, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [6] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [8] 牛晨, 刘忠伟, 杨丽珍, 陈强. 低磁场下驻波对螺旋波等离子体均匀性的影响. 物理学报, 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [9] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案. 物理学报, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [10] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [11] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究. 物理学报, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [12] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究. 物理学报, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [13] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [15] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [16] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [17] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [18] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [19] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽. 管状铝质材料的等离子体电解沉积行为研究. 物理学报, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [20] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅱ)——湍性等离子体中的共振扩散. 物理学报, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
计量
  • 文章访问数:  7224
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 修回日期:  2021-03-12
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回