搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光克尔效应的径向光束匀滑新方案

钟哲强 侯鹏程 张彬

引用本文:
Citation:

基于光克尔效应的径向光束匀滑新方案

钟哲强, 侯鹏程, 张彬

A novel radial beam smoothing scheme based on optical Kerr effect

Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin
PDF
导出引用
  • 针对惯性约束聚变装置中提高靶面辐照均匀性的要求, 提出了一种基于光克尔效应的径向光束匀滑方案, 其基本原理是利用光克尔介质和周期性高斯脉冲光束相互作用实现对激光束透射波前附加周期性的球面位相调制, 以周期性地改变激光束远场焦斑尺寸, 进而引起远场焦斑内部散斑的快速径向扫动, 从而在积分时间内抹平靶面焦斑的强度调制, 实现径向方向的光束匀滑. 通过建立基于光克尔效应的径向光束匀滑的理论模型, 分析了焦斑形态及其径向匀滑特性, 并讨论了光克尔介质的选取和径向扫动特性. 结果表明, 基于光克尔效应的径向光束匀滑方案可以有效地实现远场焦斑内部散斑的周期性径向扫动, 从而在积分时间内快速改善靶面辐照均匀性.
    Laser-beam illumination uniformity is a key issue in inertial confinement fusion facilities. In order to fulfill the requirement of improving illumination uniformity, a radial smoothing (RS) scheme is proposed. For smoothing the focal-spot pattern on a short time scale compared with the hydrodynamic response time of the target, the optical Kerr effect with extremely response time is taken into consideration. The basic principle of RS based on optical Kerr effect is that by using the interaction between optical Kerr medium and periodic Gaussian pulses to modulate a periodic spherical phase, to modulate periodic sphericel phase added at the wavefront of laser transmission wave, change the focal-spot size of the laser beam in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field. This fast radial redistribution of the speckles smoothes the intensity modulation of the focal spot on the target and eventually achieves the beam smoothing in the radial direction. The application of RS in the beamline is detailed. The optical Kerr medium is inserted in the front-end of the bemline, before the laser beam is injected into the main amplifier. The periodic Gaussian pulse for pumping the optical Kerr medium is obtained by the pulse stacking system based on fibers. The pulse width of stacked Gaussian pulse and the time delay between Gaussian pulses are set to be on a picosecond time scale or subpicosecond time scale. The induced refractive index of the optical Kerr medium by the pump laser fits spherical distribution with periodic variation, and results in the radial distribution of the speckles in focal plane. By establishing the theoretical model of the radial beam smoothing scheme implemented with continuous phase plate (CPP), the focusing characteristics of laser beam with RS and CPP are discussed in detail. The influences of the selection of optical Kerr medium and the characteristics of the radial redistribution on the radial smoothing effect are simulated and analyzed. Results indicate that the RS based on optical Kerr effect could efficiently achieve the periodic radial redistribution of the speckles on focal plane, and therefore improves the illumination uniformity in the radial direction while eliminating the stripe pattern presented in far field by one-dimensional smoothing spectral dispersion (SSD). The smoothing performance of RS is different from that of the conventional SSD due to its radial smoothing direction. Moreover, the combined application of RS with continuous phase plate could achieve a better smoothing level with a shorter time. The utilization of radial smoothing scheme in high power laser system may significantly improve the laser-beam irradiation with little influence on the performance of the beamline.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项应用基础项目(批准号: JG2014114)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Basic Research Program of the National Major Project of China (Grant No. JG2014114).
    [1]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171

    [2]

    Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301

    [3]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58

    [4]

    Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206

    [5]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [7]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725

    [8]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 物理学报 64 054209]

    [9]

    Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201

    [10]

    Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640

    [11]

    Shaw M, House R 2015 Proc. SPIE 9345 93450E

    [12]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [13]

    Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546

    [15]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [16]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [17]

    Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]

    [18]

    He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]

    [19]

    Williams E A 2006 Phys. Plasmas 13 056310

    [20]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [21]

    Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840

    [22]

    Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36

    [23]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318

    [24]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [25]

    Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254

    [26]

    Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527

    [27]

    Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]

  • [1]

    Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171

    [2]

    Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301

    [3]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58

    [4]

    Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206

    [5]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [7]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725

    [8]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 物理学报 64 054209]

    [9]

    Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201

    [10]

    Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640

    [11]

    Shaw M, House R 2015 Proc. SPIE 9345 93450E

    [12]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [13]

    Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]

    [14]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546

    [15]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [16]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [17]

    Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]

    [18]

    He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]

    [19]

    Williams E A 2006 Phys. Plasmas 13 056310

    [20]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [21]

    Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840

    [22]

    Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36

    [23]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318

    [24]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1

    [25]

    Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254

    [26]

    Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527

    [27]

    Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]

  • [1] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展. 物理学报, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [2] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [3] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [4] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案. 物理学报, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [6] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究. 物理学报, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [7] 牛晨, 刘忠伟, 杨丽珍, 陈强. 低磁场下驻波对螺旋波等离子体均匀性的影响. 物理学报, 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [8] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [9] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [10] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究. 物理学报, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [12] 晏骥, 郑建华, 陈黎, 涂绍勇, 韦敏习, 余波, 刘慎业, 江少恩. 基于神光Ⅲ原型装置的新型针孔点背光实验. 物理学报, 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [13] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [14] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [15] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [16] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [20] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
计量
  • 文章访问数:  3739
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-04
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-05-05

基于光克尔效应的径向光束匀滑新方案

    基金项目: 国家重大专项应用基础项目(批准号: JG2014114)资助的课题.

摘要: 针对惯性约束聚变装置中提高靶面辐照均匀性的要求, 提出了一种基于光克尔效应的径向光束匀滑方案, 其基本原理是利用光克尔介质和周期性高斯脉冲光束相互作用实现对激光束透射波前附加周期性的球面位相调制, 以周期性地改变激光束远场焦斑尺寸, 进而引起远场焦斑内部散斑的快速径向扫动, 从而在积分时间内抹平靶面焦斑的强度调制, 实现径向方向的光束匀滑. 通过建立基于光克尔效应的径向光束匀滑的理论模型, 分析了焦斑形态及其径向匀滑特性, 并讨论了光克尔介质的选取和径向扫动特性. 结果表明, 基于光克尔效应的径向光束匀滑方案可以有效地实现远场焦斑内部散斑的周期性径向扫动, 从而在积分时间内快速改善靶面辐照均匀性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回