搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于超快束匀滑的动态波前调控新方案

李腾飞 钟哲强 张彬

引用本文:
Citation:

用于超快束匀滑的动态波前调控新方案

李腾飞, 钟哲强, 张彬

Novel dynamic wavefront control scheme for ultra-fast beam smoothing

Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin
PDF
导出引用
  • 提出了利用光克尔效应实现激光束波前动态调控,进而实现焦斑超快束匀滑(ps量级)的方案,其原理是利用抽运光动态改变光克尔介质的折射率分布,以对透射主激光束附加时空耦合的动态波前,进而使激光束在靶面的焦斑散斑产生更加快速、多样的变化,最终实现焦斑的超快束匀滑.当抽运光时间波形为高斯脉冲序列,且以小角度倾斜入射至光克尔介质时,由于抽运光和光克尔介质对主激光附加随时间横向移动的周期性球面相位,且球面相位的幅值随时间不断变化,因而可以同步实现激光束焦面散斑的横向和径向超快速扫动,从而更为有效地改善靶面辐照均匀性.
    In inertial confinement facilities, the irradiation uniformity of the lasers is highly required to suppress the laser plasma instabilities. In order to realize the ultrafast smoothing of the focal spot, a novel scheme by using an optical Kerr medium and a high-power pump laser is proposed. The principle of the ultrafast beam smoothing scheme is to change the refractive index of the Kerr medium with the pump laser, which appends a spatiotemporal wavefront to the main laser beam in the beamline. The dynamic wavefront modulation of the main laser beam further makes the speckles within the focal spot redistributed rapidly and complicatedly, which contributes to the smoothing of the focal spot. A Gaussian beam with a temporal profile of a Gaussian pulse train is obliquely incident on the optical Kerr medium at a small angle. As a result, the spherical wavefront of the main laser beam is rapidly changed in the direction perpendicular to the propagation direction of the main laser beam. Thus the transverse and the radial redistribution of the speckles within the focal spot are both generated simultaneously. Comparing with the simple radial smoothing scheme, the spherical phase of the main laser beam always changes perpendicularly to the propagation direction in the novel scheme, and thus achieving a more stable beam smoothing effect. Besides, the phase gradient in the center region of the main laser beam changes greatly over time, making the irradiation uniformity on the focal plane further improved. The optimal deflection angle in the optical Kerr medium of the pump laser is obtained. By controlling the deflection angle of the pump laser, the spatial period of the pump laser in the transverse direction is set to be equal to the waist diameter of the main laser, which is identical with one color cycle in the typical smoothing by spectral dispersion technique. Moreover, a relatively low control precision of the deflection angle of the pump laser is required.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项(批准号:JG2017037)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the National Major Project of China (Grant No. JG2017037).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyerhofer D D, Delettrez J A, Epstein R, Glebov V Y, Goncharov V N, Keck R L, McCrory R L, McKenty P W, Marshall F J, Radha P B, Regan S P, Roberts S, Seka W, Skupsky S, Smalyuk V A, Sorce C, Stoeckl C, Soures J M, Town R P J, Yaakobi B, Zuegel J D 2001 Phys. Plasmas 8 2251

    [3]

    Wen S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 162 (in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯 2014 光学学报 34 162]

    [4]

    Jiang X J, Zhou S L, Lin Z Q 2007 Chin. J. Laser 11 1533 (in Chinese)[江秀娟, 周申蕾, 林尊琪 2007 中国激光 11 1533]

    [5]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [6]

    Lehmberg R H, Schmitt A J, Bodner S E 1987 J. Appl. Phys. 62 2680

    [7]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [8]

    Berger R L, Lefebvre E, Langdon A B, Rothenberg J E, Still C H, Williams E A 1999 Phys. Plasmas 6 1043

    [9]

    Yahia V, Masson-Laborde P E, Depierreux S, Goyon C, Loisel G, Baccou C, BorisenkoN G, Orekhov A, Rienecker T, Rosmej O, Teychenné D, Labaune C 2015 Phys. Plasmas 22 042707

    [10]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318

    [11]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850

    [12]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

    [13]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, van Wonterghem B M 2007 Appl. Opt. 46 3276

    [14]

    Zeng S G, Hu J, Wang F 2013 Acta Opt. Sin. 33 156 (in Chinese)[曾曙光, 胡静, 王飞 2013 光学学报 33 156]

    [15]

    Bowers M W, Burkhart S C, Cohen S J, Erbert G V, Heebner J E, Hermann M R, Jedlovec D 2007 Proc. SPIE 6451 Solid State Lasers XVI:Technology and Devices San Jose, CA, United States, January 20-25, 2007 p64511

    [16]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion:Second Annual International Conference Paris, France, October 22-25, 1996 p783

    [17]

    Kedenburg S, Steinmann A, Hegenbarth R, Steinle T, Giessen H 2014 J. Appl. Phys. 117 803

    [18]

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 144 (in Chinese)[李腾飞, 侯鹏程, 张彬 2016 光学学报 36 144]

    [19]

    Zhang R 2013 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[张锐 2013 博士学位论文 (合肥:中国科学技术大学)]

    [20]

    Skupsky S, Short R W, Kessler T J, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [21]

    Rothenberg J E 1997 JOSA B 14 1664

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyerhofer D D, Delettrez J A, Epstein R, Glebov V Y, Goncharov V N, Keck R L, McCrory R L, McKenty P W, Marshall F J, Radha P B, Regan S P, Roberts S, Seka W, Skupsky S, Smalyuk V A, Sorce C, Stoeckl C, Soures J M, Town R P J, Yaakobi B, Zuegel J D 2001 Phys. Plasmas 8 2251

    [3]

    Wen S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 162 (in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯 2014 光学学报 34 162]

    [4]

    Jiang X J, Zhou S L, Lin Z Q 2007 Chin. J. Laser 11 1533 (in Chinese)[江秀娟, 周申蕾, 林尊琪 2007 中国激光 11 1533]

    [5]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [6]

    Lehmberg R H, Schmitt A J, Bodner S E 1987 J. Appl. Phys. 62 2680

    [7]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [8]

    Berger R L, Lefebvre E, Langdon A B, Rothenberg J E, Still C H, Williams E A 1999 Phys. Plasmas 6 1043

    [9]

    Yahia V, Masson-Laborde P E, Depierreux S, Goyon C, Loisel G, Baccou C, BorisenkoN G, Orekhov A, Rienecker T, Rosmej O, Teychenné D, Labaune C 2015 Phys. Plasmas 22 042707

    [10]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318

    [11]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850

    [12]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

    [13]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, van Wonterghem B M 2007 Appl. Opt. 46 3276

    [14]

    Zeng S G, Hu J, Wang F 2013 Acta Opt. Sin. 33 156 (in Chinese)[曾曙光, 胡静, 王飞 2013 光学学报 33 156]

    [15]

    Bowers M W, Burkhart S C, Cohen S J, Erbert G V, Heebner J E, Hermann M R, Jedlovec D 2007 Proc. SPIE 6451 Solid State Lasers XVI:Technology and Devices San Jose, CA, United States, January 20-25, 2007 p64511

    [16]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion:Second Annual International Conference Paris, France, October 22-25, 1996 p783

    [17]

    Kedenburg S, Steinmann A, Hegenbarth R, Steinle T, Giessen H 2014 J. Appl. Phys. 117 803

    [18]

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 144 (in Chinese)[李腾飞, 侯鹏程, 张彬 2016 光学学报 36 144]

    [19]

    Zhang R 2013 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[张锐 2013 博士学位论文 (合肥:中国科学技术大学)]

    [20]

    Skupsky S, Short R W, Kessler T J, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [21]

    Rothenberg J E 1997 JOSA B 14 1664

  • [1] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用. 物理学报, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] 黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋. 在间接驱动内爆实验中采用花生腔增强对称性调控. 物理学报, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [5] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究. 物理学报, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [6] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [7] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [8] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究. 物理学报, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [9] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [10] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案. 物理学报, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [11] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [12] 晏骥, 郑建华, 陈黎, 涂绍勇, 韦敏习, 余波, 刘慎业, 江少恩. 基于神光Ⅲ原型装置的新型针孔点背光实验. 物理学报, 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [13] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [14] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [15] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [16] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [17] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [18] 刘进山, 杨俊义, 宋瑛林, 侯登科. 相位物体Z-扫描研究金属簇合物[Tp*W(μ3-S)3Cu3Py3(μ3-Br)](PF6)/DMF溶液的瞬态热致非线性折射. 物理学报, 2009, 58(8): 5810-5815. doi: 10.7498/aps.58.5810
    [19] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [20] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
计量
  • 文章访问数:  6097
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-05-31
  • 刊出日期:  2018-09-05

/

返回文章
返回