搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低相干光的阵列透镜束匀滑技术研究

高妍琦 赵晓晖 贾果 李福建 崔勇 饶大幸 季来林 刘栋 冯伟 黄秀光 马伟新 隋展

引用本文:
Citation:

基于低相干光的阵列透镜束匀滑技术研究

高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展

Low-coherece laser based lens array beam smoothing techique

Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan
PDF
HTML
导出引用
  • 基于激光加载的材料状态方程的实验研究对靶面光强分布的均匀性及稳定性提出了极高的要求, 靶面光强的上述两大特性在很大程度上决定了实验结果的精度和可重复性. 本文针对传统窄带高相干激光装置在激光加载材料状态方程实验中表现出的靶面光强均匀性和光强分布稳定性两方面可能存在的问题, 提出了基于宽带低相干激光, 利用消衍射阵列透镜联合诱导非相干技术的束匀滑方案, 并重点分析了波前相位畸变对靶面不均匀性及稳定性的影响. 模拟结果表明, 该方法明显降低了靶面不均匀性, 提高了对波前相位畸变的包容度, 获得了均匀、稳定的光强分布. 统计分析显示, 焦斑强度分布极差和不均匀性与波前相位畸变均方根梯度相关性较强. 因此, 可以根据统计结果以及实验对焦斑强度分布的要求, 给出波前相位畸变的容差范围, 对状态方程实验中激光驱动器参数的设计与优化具有指导意义.
    The experimental study of laser-driven material state equation puts forward extremely high requirements for the uniformity and stability of the target spot intensity distribution, and these two characteristics greatly determine the accuracy and repeatability of the experimental results. In this paper, a beam smoothing scheme combining diffraction-weakened lens array (LA) with induced spatial incoherent (ISI) technique based on low-coherence laser is proposed to solve the problems, that is, the uniformity and stability of the target spot intensity distribution in the material state equation experiments driven with narrow-band coherent laser. The super-Gaussian soft aperture used in our scheme can improve the intensity fluctuation caused by the hard-edge diffraction of the lens elements, and the temporal smoothing technique, ISI, can reduce the interference effect between the lens array elements. The speckle patterns of target spot, which are caused by interference between beamlets and determine the high nonuniformity, will randomly reconstruct after each coherent time. The high-frequency components are further smoothed by the time-average effect. In broadband high-power laser devices, ISI can be combined with LA by making the lens elements with different thickness values. This scheme can enhance the focal spot uniformity and improve the tolerance of the system to the wavefront phase distortion. The influence of wavefront phase distortion on target surface uniformity and stability are analyzed. The simulation results show that this smoothing scheme significantly reduces the target spot nonuniformity, improves the tolerance of random wavefront phase distortion, and presents a uniform and stable target spot intensity distribution. The nonuniformity of target spot will be reduced to about 10% after 10 ps, and about 3% after 100 ps. In addition, statistical analysis shows that the peak-to-valley value and the nonuniformity of the target spot intensity distribution are strongly correlated with the gradient of root-mean-square of the wavefront phase distortion. Using this method, the tolerance range of the wavefront phase distortion can be given according to the requirements of the experiments, which has reference value for designing and optimizing the laser driver parameters in the state equation experiment.
      通信作者: 赵晓晖, xhzhao_silp@163.com
    • 基金项目: 科学挑战计划(批准号: TZ2016005)和国家自然科学基金(批准号: 11604317, 11604318, 11804321)资助的课题.
      Corresponding author: Zhao Xiao-Hui, xhzhao_silp@163.com
    • Funds: Project supported by the Science Challenge Project,China (Grant No. TZ2016005), and the National Natural Science Foundation of China (Grant Nos. 11604317, 11604318, 11804321).
    [1]

    Lin Y, Kessler T, Lawrence G 1996 Opt. Lett. 21 1703Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 3377

    [4]

    江秀娟, 李菁辉, 朱俭, 林尊琪 2015 物理学报 64 054201Google Scholar

    Jiang X J, Li J H, Zhu J, Lin Z Q 2015 Acta Phys. Sin. 64 054201Google Scholar

    [5]

    周冰洁, 钟哲强, 张彬 2012 物理学报 61 214002

    Zhou B J, Zhong Z Q, Zhang B 2012 Acta Phys. Sin. 61 214002

    [6]

    Skupsky S, Short R, Kessler T, Craxton R, Letzring S, Soures J 1989 J. Appl. Phys. 66 3456Google Scholar

    [7]

    Skupsky S, Craxton R, Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157Google Scholar

    [8]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725Google Scholar

    [9]

    Obenschain S, Grun J, Herbst M, Kearney K, Manka C, McLean E, Mostovych A, Stamper A, Whitlock R, Bodner S, Gardner J, Lehmberg R 1986 Phys. Rev. Lett. 56 2807Google Scholar

    [10]

    Obenschain S, BodnerS, Colombant D, Gerber K, Lehmberg R, McLean E, Mostovych A, Pronko M, Pawley C, Schmitt A, Sethian J, Serlin V, Stamper J, Sullivan C 1996 Phys. Plasmas 3 5

    [11]

    Rothenberg J 2000 J. Appl. Phys. 87 3654Google Scholar

    [12]

    Wang Y C, Wang F, Zhang Y, Huang X X, Hu D X, Zheng W G, Zhu R H, Deng X W 2017 Appl. Opt. 56 8087Google Scholar

    [13]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [14]

    Weng X F, Li T F, Zhong Z Q, Zhang B 2017 Appl. Opt. 56 8902Google Scholar

    [15]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K, Manes K, Marshall C, Mehta N, Menapace J, Moses E, Murray J, Nostrand M, Orth C, Patterson R, Sacks R, Shaw M, Spaeth M, Sutton S, Williams W, Widmayer C, White R, Yang S, Wonterghem B 2007 Appl. Opt. 46 3276Google Scholar

    [16]

    Jiang X J, Li J H, Li H G, Li Y, Lin Z Q 2011 Appl. Opt. 50 5213Google Scholar

    [17]

    江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪 2012 物理学报 61 124202Google Scholar

    Jiang X J, Li J H, Li H G, Zhou S L, Li Y, Lin Z Q 2012 Acta Phys. Sin. 61 124202Google Scholar

    [18]

    Zhou S L, Lin Z Q, Jiang X J 2007 Opt. Commun. 272 186Google Scholar

    [19]

    陈泽尊, 向春, 邓锡铭 1985 中国激光 13 65Google Scholar

    Chen Z Z, Xiang C, Deng X M 1985 Chin. J. Las. 13 65Google Scholar

    [20]

    Regan S, Marozas J, Kelly J, Boehly T, Donaldson W, Jaanimagi P, Keck R, Kessler T, Meyerhofer D, Seka W 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

  • 图 1  阵列透镜及束匀滑装置示意图

    Fig. 1.  Diagram of lens array and the beam smoothing scheme.

    图 2  阵列透镜匀滑靶面光强分布

    Fig. 2.  Intensity distribution of target spot after lens array smoothing.

    图 3  (a), (b)相邻发次状态方程的实验结果; (c)曲线为对应突出靶后界面的时间分布曲线

    Fig. 3.  (a) and (b) Are the adjacent experimental results of state equation, and the curves in (c) are the time distributions of back of the target.

    图 5  滤波后不同波前误差对应靶面强度分布的对比

    Fig. 5.  Comparison of the target intensity distribution corresponding to the different wavefronts after filtering.

    图 4  波前畸变造成的焦斑分布不均匀性及差异性 上排为波前相位理想分布及波前畸变, 下排为对应的焦斑强度分布

    Fig. 4.  The nonuniformity and difference of the focal spot distributions caused by wavefront distortion. The upper row is the ideal distribution of the wavefront phase and the wavefront distortion, and the lower row is the focal spot intensity distribution, respectively.

    图 6  仅采用阵列透镜匀滑时, 焦斑光强分布与波前相位畸变统计特性之间的关系

    Fig. 6.  Relationship of the statistical characteristics of target intensity distributions and that of the wavefront phase distortions, with only the lens array used for smoothing.

    图 7  焦斑不均匀度随匀滑时间的变化关系的理论与模拟结果对比

    Fig. 7.  The relationship of target spot nonuniformity versus smoothing time: theory and simulation results.

    图 8  不同波前误差, 消衍射阵列透镜联合ISI束匀滑方案焦斑光强分布对比

    Fig. 8.  The target spots smoothed by diffraction-weakened LA and ISI with different wavefront distortion.

    图 9  消衍射阵列透镜联合ISI束匀滑后, 焦斑光强分布与波前相位畸变统计特性之间的关系

    Fig. 9.  Relationship of the statistical characteristics of target intensity distributions and that of the wavefront phase distortions, with diffraction-weakened LA and ISI used for smoothing.

    表 1  不同波前相位畸变, 焦斑不均匀度随匀滑时间的变化

    Table 1.  The nonuniformity of target at different smoothing time with different wavefront distortion.

    T($\tau $)1101001000Inf
    $ \sigma ({\phi _0})$0.97160.34230.09560.03030.0060
    $ \sigma ({\phi _1})$1.02670.32090.10120.03320.0118
    $ \sigma ({\phi _2})$0.93740.30420.09890.03450.0158
    下载: 导出CSV
  • [1]

    Lin Y, Kessler T, Lawrence G 1996 Opt. Lett. 21 1703Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 3377

    [4]

    江秀娟, 李菁辉, 朱俭, 林尊琪 2015 物理学报 64 054201Google Scholar

    Jiang X J, Li J H, Zhu J, Lin Z Q 2015 Acta Phys. Sin. 64 054201Google Scholar

    [5]

    周冰洁, 钟哲强, 张彬 2012 物理学报 61 214002

    Zhou B J, Zhong Z Q, Zhang B 2012 Acta Phys. Sin. 61 214002

    [6]

    Skupsky S, Short R, Kessler T, Craxton R, Letzring S, Soures J 1989 J. Appl. Phys. 66 3456Google Scholar

    [7]

    Skupsky S, Craxton R, Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157Google Scholar

    [8]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725Google Scholar

    [9]

    Obenschain S, Grun J, Herbst M, Kearney K, Manka C, McLean E, Mostovych A, Stamper A, Whitlock R, Bodner S, Gardner J, Lehmberg R 1986 Phys. Rev. Lett. 56 2807Google Scholar

    [10]

    Obenschain S, BodnerS, Colombant D, Gerber K, Lehmberg R, McLean E, Mostovych A, Pronko M, Pawley C, Schmitt A, Sethian J, Serlin V, Stamper J, Sullivan C 1996 Phys. Plasmas 3 5

    [11]

    Rothenberg J 2000 J. Appl. Phys. 87 3654Google Scholar

    [12]

    Wang Y C, Wang F, Zhang Y, Huang X X, Hu D X, Zheng W G, Zhu R H, Deng X W 2017 Appl. Opt. 56 8087Google Scholar

    [13]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [14]

    Weng X F, Li T F, Zhong Z Q, Zhang B 2017 Appl. Opt. 56 8902Google Scholar

    [15]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K, Manes K, Marshall C, Mehta N, Menapace J, Moses E, Murray J, Nostrand M, Orth C, Patterson R, Sacks R, Shaw M, Spaeth M, Sutton S, Williams W, Widmayer C, White R, Yang S, Wonterghem B 2007 Appl. Opt. 46 3276Google Scholar

    [16]

    Jiang X J, Li J H, Li H G, Li Y, Lin Z Q 2011 Appl. Opt. 50 5213Google Scholar

    [17]

    江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪 2012 物理学报 61 124202Google Scholar

    Jiang X J, Li J H, Li H G, Zhou S L, Li Y, Lin Z Q 2012 Acta Phys. Sin. 61 124202Google Scholar

    [18]

    Zhou S L, Lin Z Q, Jiang X J 2007 Opt. Commun. 272 186Google Scholar

    [19]

    陈泽尊, 向春, 邓锡铭 1985 中国激光 13 65Google Scholar

    Chen Z Z, Xiang C, Deng X M 1985 Chin. J. Las. 13 65Google Scholar

    [20]

    Regan S, Marozas J, Kelly J, Boehly T, Donaldson W, Jaanimagi P, Keck R, Kessler T, Meyerhofer D, Seka W 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 李斌, 刘占军, 郝亮, 郑春阳, 蔡洪波, 何民卿. 束匀滑光束偏折现象的模拟. 物理学报, 2020, 69(7): 075201. doi: 10.7498/aps.69.20191639
    [3] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] 邓万涛, 赵刚, 夏惠军, 张茂, 杨艺帆. 非相干合成阵列激光倾斜像差校正方法. 物理学报, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [5] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [6] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析. 物理学报, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [7] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案. 物理学报, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [8] 李福建, 高妍琦, 赵晓晖, 季来林, 王伟, 黄秀光, 马伟新, 隋展, 裴文兵. 诱导空间非相干束匀滑技术的近区特性及改善技术. 物理学报, 2018, 67(17): 175201. doi: 10.7498/aps.67.20180533
    [9] 王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲. 高功率、高效率808nm半导体激光器阵列. 物理学报, 2016, 65(16): 164203. doi: 10.7498/aps.65.164203
    [10] 江秀娟, 李菁辉, 朱俭, 林尊琪. 基于简单透镜列阵的可调焦激光均匀辐照光学系统研究. 物理学报, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [11] 钟哲强, 周冰洁, 叶荣, 张彬. 多频多色光谱角色散束匀滑新方案. 物理学报, 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
    [12] 李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦. 基于焦斑空间频率全域优化的偏振匀滑设计. 物理学报, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [13] 周冰洁, 钟哲强, 张彬. 光束运动特性对焦斑束匀滑效果的影响. 物理学报, 2012, 61(21): 214202. doi: 10.7498/aps.61.214202
    [14] 袁志林, 杨睿, 杨柳, 宋丽丹, 孙莉萍, 马雨虹, 王猛, 陈定康, 郭金平, 唐丽红. 基于单准直透镜的阵列准直器研究. 物理学报, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [15] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [16] 江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪. 采用透镜列阵与光谱色散改善三倍频小焦斑辐照均匀性. 物理学报, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [17] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 肖发俊, 张 鹏, 刘 圣, 赵建林. 光诱导平面波导阵列中离散空间光孤子的相干相互作用. 物理学报, 2008, 57(4): 2529-2536. doi: 10.7498/aps.57.2529
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 殷光裕, 何兴法. 六束高功率钕玻璃激光器. 物理学报, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
计量
  • 文章访问数:  8202
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-02-14
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回