搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涡旋光束的超快速角向集束匀滑方案

田博宇 钟哲强 隋展 张彬 袁孝

引用本文:
Citation:

基于涡旋光束的超快速角向集束匀滑方案

田博宇, 钟哲强, 隋展, 张彬, 袁孝

Ultrafast azimuthal beam smoothing scheme based on vortex beam

Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao
PDF
HTML
导出引用
  • 针对惯性约束聚变装置对激光集束辐照均匀性的需求, 提出了一种基于涡旋光束的超快速角向匀滑方案, 即利用螺旋相位板使2×2集束中的两子束由超高斯光束变换为涡旋光束, 而其余两子束不变, 进而通过对子束偏振态和中心波长的调控, 使集束中的涡旋光束和超高斯光束在靶面两两相干叠加. 相干叠加后的焦斑以皮秒量级为周期超快速旋转, 从而在极短时间内快速抹平焦斑强度调制, 改善靶面辐照均匀性. 通过建立基于螺旋相位板的激光超快速角向集束匀滑方案的物理模型, 分析了其角向匀滑特性, 并与光谱角色散技术和径向匀滑技术进行了比较分析. 结果表明, 这一新型激光集束匀滑方案能实现对焦斑的超快速角向匀滑, 且能在数皮秒时间内达到最佳辐照均匀性.
    The illumination uniformity of laser beams in inertial confinement fusion (ICF) facility is a key factor, which plays a crucial role in suppressing the laser plasma instabilities. However, the prevailing beam smoothing techniques cannot meet all the requirements for improving the irradiance uniformity of laser beams and mitigating the laser plasma instabilities, which are determined by the high-frequency spatial modulations and the fine-scale speckles of the focal spots. An ultrafast azimuthal beam smoothing scheme based on vortex beams is proposed in this paper. In this scheme, two of the four beams in a laser quad are transformed from super-Gaussian (SG) beams into vortex beams by inserting two spiral phase plates with opposite topological charges into the beam path, whereas the other two SG beams remain unchanged. By controlling the polarization and the center wavelength of each beam, the SG beam and the transformed vortex beam in the quad are coherently superposed on the target plane, so are the remaining two beams. Owing to the difference in central wavelength and the existence of the topological charges, two focal spots rotating in a period of a few picoseconds are generated in the target plane, which can redistribute the speckles quickly in temporal domain and thus improve the irradiance uniformity of the laser quad. By establishing the physical model of the azimuthal smoothing scheme, the smoothing characteristics including the rotation period, the illumination uniformity and the fractional-power-above-intensity of the focal spots are analyzed in detail. In order to improve the smoothing characteristics significantly, the novel smoothing scheme is further combined with another ultrafast smoothing scheme, i.e. radial smoothing scheme. The influence of the key parameters of the combined smoothing scheme on the illumination uniformity and on the smoothing velocity are discussed. Results indicate that the azimuthal smoothing scheme can achieve the ultrafast smooth of the laser quad in the azimuthal direction and the best illumination uniformity within a few picoseconds as well. Though the degree of improvement in the irradiance uniformity of the azimuthal smoothing scheme is lower than that of the radial smoothing, the combination of these two schemes can improve the uniformity effectively and rapidly. The novel smoothing scheme provides a potential smoothing approach for the high-power laser facilities.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项应用基础项目(批准号: JG2017149, JG2017029)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Basic Research Program of the National Major Project of China (Grant Nos. JG2017149, JG2017029).
    [1]

    Miller G H, Moses E I, Wuest C R 2004 Nucl. Fusion 44 S228Google Scholar

    [2]

    Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar

    [3]

    Rushford M C, Dixit S N, Thomas I M, Martin A M, Perry M D 2000 Proc. SPIE 87 3654

    [4]

    Néauport J, Ribeyre X, Daurios J, Valla D, Martine L, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar

    [5]

    Boehly T R, Babushkin A, Bradley D K, Craxton R S, Delettrez J A, Epstein R, Kessler T J, Knayer J P, McCrory R L, McKenty P W, Meyerhofer D D, Regan S, Seka W, Skupsky S, Smalyuk V A, Town R P J, Yaakobi B 2001 Laser Part. Beams 18 11

    [6]

    Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342

    [7]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [8]

    Glenzer S H, Suter L J, Turner R E, Macgowan B J, Estabrook K G, Blain M A, Dixit S N, Hammel B A, Kauffman R L, Kirkwood R K, Landen O L, Monteil M C, Moody J D, Orzechowski T J, Pennington D M, Stone G F, Weiland T L 1998 Phys. Rev. Lett. 80 2845

    [9]

    Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [10]

    Zhong Z, Hou P, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [11]

    Chen J, Kuang D F, Gui M, Fang Z L 2009 Chin. Phys. Lett. 26 102

    [12]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [13]

    Paisner J A, Murray J R 1997 17th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA (United States), October 6−10, 1997 p57

    [14]

    Wisoff P J, Bowers M W 2004 Proc. SPIE 5341 146Google Scholar

    [15]

    刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201Google Scholar

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201Google Scholar

    [16]

    Wang Y, Wang F, Zhang Y, Huang X, Hu D, Zheng W, Zhu R, Deng X 2017 Appl. Opt. 56 8087Google Scholar

    [17]

    Schneider M B, Maclaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kilkenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, MoodyJ D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [18]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar

    [19]

    Pennington D M, Henesian M A, Wilcox R B, Wilcox R B, Weiland T L, Eimerl D, Ehrlich R B, Laumann C W, Miller J L 1995 The 1st Annual International Conference on Solid-State Lasers for Application to Inertial Confinement Fusion California, American, May 30−June 2, 1995 p214

    [20]

    Kotlyar V V, Almazov A A, Khonina S N, Soifer V A 2005 J. Opt. Soc. Am. A 22 849Google Scholar

    [21]

    Wang C, Liu T, Ren Y, Shao Q, Dong H 2018 Optik 171 404

    [22]

    Guo C S, Xue D M, Han Y J, Ding J P 2006 Opt. Commun. 268 235Google Scholar

  • 图 1  角向匀滑方案示意图

    Fig. 1.  Schematic illustration of angular smoothing.

    图 2  靶面光强分布 (a) CPP+SSD; (b) CPP+RS; (c) CPP+AS

    Fig. 2.  Intensity distributions of target face: (a) CPP+SSD; (b) CPP+RS; (c) CPP+AS.

    图 3  不同方案的焦斑特性 (a)光通量对比度积分时间的变化规律; (b) FOPAI

    Fig. 3.  Focal-spot characteristics of different schemes: (a) Change regulation of integral time of contrast; (b) FOPAI.

    图 4  靶面光强分布 (a)—(f) 瞬时光强; (g) 平均光强

    Fig. 4.  Intensity distribution on target surface: (a)−(f) Instant intensity; (g) average intensity.

    图 5  AS+RS联用的束匀滑方案 (a) 光通量对比度; (b) FOPAI; (c)焦斑光强分布; (d)散斑扫动速度径向分布

    Fig. 5.  Uniformity improvement of focal spot when AS is applied with RS: (a) Contrast curves; (b) FOPAI curves; (c) focal-spot intensity distribution; (d) swiping velocity distribution of speckles in radial direction.

    图 6  焦斑光通量对比度随 (a)中心波长差$ \Delta \lambda $, (b)拓扑荷数|m|的变化

    Fig. 6.  Contrast variations with different (a) central wavelength shift $ \Delta \lambda $ and (b) topological charges |m|.

  • [1]

    Miller G H, Moses E I, Wuest C R 2004 Nucl. Fusion 44 S228Google Scholar

    [2]

    Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar

    [3]

    Rushford M C, Dixit S N, Thomas I M, Martin A M, Perry M D 2000 Proc. SPIE 87 3654

    [4]

    Néauport J, Ribeyre X, Daurios J, Valla D, Martine L, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar

    [5]

    Boehly T R, Babushkin A, Bradley D K, Craxton R S, Delettrez J A, Epstein R, Kessler T J, Knayer J P, McCrory R L, McKenty P W, Meyerhofer D D, Regan S, Seka W, Skupsky S, Smalyuk V A, Town R P J, Yaakobi B 2001 Laser Part. Beams 18 11

    [6]

    Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342

    [7]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [8]

    Glenzer S H, Suter L J, Turner R E, Macgowan B J, Estabrook K G, Blain M A, Dixit S N, Hammel B A, Kauffman R L, Kirkwood R K, Landen O L, Monteil M C, Moody J D, Orzechowski T J, Pennington D M, Stone G F, Weiland T L 1998 Phys. Rev. Lett. 80 2845

    [9]

    Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [10]

    Zhong Z, Hou P, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [11]

    Chen J, Kuang D F, Gui M, Fang Z L 2009 Chin. Phys. Lett. 26 102

    [12]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [13]

    Paisner J A, Murray J R 1997 17th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA (United States), October 6−10, 1997 p57

    [14]

    Wisoff P J, Bowers M W 2004 Proc. SPIE 5341 146Google Scholar

    [15]

    刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201Google Scholar

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201Google Scholar

    [16]

    Wang Y, Wang F, Zhang Y, Huang X, Hu D, Zheng W, Zhu R, Deng X 2017 Appl. Opt. 56 8087Google Scholar

    [17]

    Schneider M B, Maclaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kilkenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, MoodyJ D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [18]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar

    [19]

    Pennington D M, Henesian M A, Wilcox R B, Wilcox R B, Weiland T L, Eimerl D, Ehrlich R B, Laumann C W, Miller J L 1995 The 1st Annual International Conference on Solid-State Lasers for Application to Inertial Confinement Fusion California, American, May 30−June 2, 1995 p214

    [20]

    Kotlyar V V, Almazov A A, Khonina S N, Soifer V A 2005 J. Opt. Soc. Am. A 22 849Google Scholar

    [21]

    Wang C, Liu T, Ren Y, Shao Q, Dong H 2018 Optik 171 404

    [22]

    Guo C S, Xue D M, Han Y J, Ding J P 2006 Opt. Commun. 268 235Google Scholar

  • [1] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [2] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [3] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [5] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [6] 余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏, 江少恩, 郑坚. 神光III主机极向驱动靶丸表面辐照均匀性. 物理学报, 2017, 66(14): 145202. doi: 10.7498/aps.66.145202
    [7] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案. 物理学报, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [8] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [9] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [10] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [12] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [13] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [14] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [15] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化. 物理学报, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [16] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [18] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [20] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
计量
  • 文章访问数:  6813
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-15
  • 修回日期:  2018-10-10
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回