-
极向驱动是在间接驱动构型的激光装置中,通过重瞄各束激光的位置,实现较均匀的靶丸表面激光辐照,以研究直接驱动惯性约束聚变的关键物理问题.介绍了神光III主机装置的激光排布和焦斑特点,以及激光束重瞄方法和靶丸表面激光辐照均匀性优化原则.给出了三阶和五阶超高斯近似下的激光焦斑强度分布,540 m靶丸在能量沉积满足cos2和cos 假设时靶丸表面最均匀辐照的移束参数,以及二维辐射流体程序模拟最优移束时的内爆对称性结果.二维模拟结果表明,按cos假设移束的热斑更对称.分析了激光的束间功率不平衡、激光束重瞄精度和靶丸定位精度对靶丸表面辐照均匀性的影响.模拟结果表明,为了不显著降低靶丸表面辐照均匀性,需要将束间功率不平衡控制在5%以内,激光束重瞄精度和靶丸定位精度控制在7 m以内.Inertial confinement fusion utilizes sufficient laser beams to directly illuminate a spherical capsule, or convert the laser into thermal X-rays inside a high Z hohlraum to drive capsule implosion. The direct drive implosion is one of ways toward central ignition and similar to the indirect drive implosion, but has higher laser energy coupling efficiency and the potential for higher-gain implosion than indirect drive, and needs stringent laser condition. In order to develop and execute the direct drive experiment on the laser facility, which is configured initially for indirect drive, the polar direct drive has been proposed and validated on the Omega laser facility and the National Ignition Facility. The polar direct drive repoints some of the beams toward the polar and equator of the target, thus increasing the drive energy on the polar and equator of capsule and achieving the most uniform irradiation. The present article focuses on the laser irradiation uniformity of the target in polar direct drive on ShenGuangIII (SGIII) facility. Firstly, the laser beam configuration of the SGIII, the characteristics of laser spots, the laser beam repointing strategy and the principle of optimization are introduced. The 48 laser beams are distributed over four cones per hemisphere and the beam centerlines are repointed in polar direct drive. The continuous phase plates (CPPs) of the SGIII are designed to have unique shape to make the laser beam with a 250 m-radius circular section at the laser entrance hole in indirect drive, and thus the laser beams have ellipse cross sections with fixed major axis and different minor axes in different cones. Then, the irradiation uniformity of 540 m target is optimized by the three-dimensional (3D) view factor method on the assumption that the laser intensity distribution is super-Gaussian with three and five orders, and the energy deposition distributions are expressed as cos2 and cos . The irradiation nonuniformity of less than 5% on the polar direct drive capsule of 540 m in diameter is achieved. The pressure distribution of the hot spot at the neutron bang time with the optimized parameter is also simulated by Multi2D, and the results of 2D hydrodynamics simulation indicate that the hot spot under the assumption of cos distribution is more symmetric. Finally, the effects on irradiation uniformity of the beam-to-beam power imbalance, the repointing error and the target pointing error are estimated by the Monte Carlo method. According to the simulation results, the laser root mean square nonuniformity on the target will not become worse observably when the maximal beam-to-beam power imbalance is limited to a value of 5%, and the repointing error and the target pointing error are better than 7 m.
-
Keywords:
- polar drive /
- irradiation uniformity /
- laser repointing
[1] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129
[2] Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32
[3] Lindl J D 1995 Phys. Plasmas 2 3933
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[5] Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901
[6] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501
[7] Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501
[8] Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763
[9] Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705
[10] Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308
[11] Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304
[12] Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704
[13] Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703
[14] Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306
[15] Moses E I 2008 Fusion Sci. Technol. 54 361
[16] Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310
[17] Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308
[18] Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707
[19] Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701
[20] Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710
[21] Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710
[22] Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]
[23] Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607
[24] Schmitt A J 1984 Appl. Phys. Lett. 44 399
[25] Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465
[26] Basko M 1996 Phys. Plasmas 3 4148
[27] Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003
[28] Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977
-
[1] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129
[2] Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32
[3] Lindl J D 1995 Phys. Plasmas 2 3933
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[5] Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901
[6] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501
[7] Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501
[8] Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763
[9] Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705
[10] Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308
[11] Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304
[12] Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704
[13] Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703
[14] Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306
[15] Moses E I 2008 Fusion Sci. Technol. 54 361
[16] Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310
[17] Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308
[18] Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707
[19] Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701
[20] Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710
[21] Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710
[22] Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]
[23] Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607
[24] Schmitt A J 1984 Appl. Phys. Lett. 44 399
[25] Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465
[26] Basko M 1996 Phys. Plasmas 3 4148
[27] Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003
[28] Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977
计量
- 文章访问数: 5109
- PDF下载量: 152
- 被引次数: 0