搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子辐照导致的SiC肖特基势垒二极管损伤机理

彭超 雷志锋 张战刚 何玉娟 陈义强 路国光 黄云

引用本文:
Citation:

重离子辐照导致的SiC肖特基势垒二极管损伤机理

彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云

Damage mechanism of SiC Schottky barrier diode irradiated by heavy ions

Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Chen Yi-Qiang, Lu Guo-Guang, Huang Yun
PDF
HTML
导出引用
  • 基于高能Ta离子辐照研究了SiC肖特基势垒二极管的失效模式和机理, 实验表明辐照过程中的反向偏置电压是影响SiC肖特基势垒二极管器件失效的关键因素. 当器件反向偏置在400 V时, 重离子会导致器件的单粒子烧毁, 辐照后的器件出现了因SiC材料熔融形成的“孔洞”; 当器件反向偏置在250—300 V时, 器件失效表现为关态漏电流随着离子注量增加而增加, 且器件的偏压越高, 重离子导致的漏电增加率也越高. 对于发生漏电增加的器件, 基于显微分析技术发现了分布在整个有源区内重离子导致的漏电通道. TCAD仿真结果表明, 重离子入射会导致器件内部的晶格温度上升, 且最大晶格温度随着偏置电压的增加而增加. 当偏置电压足够大时, 器件内部的局部晶格温度达到了SiC材料的熔点, 最终导致单粒子烧毁; 当偏置电压较低时, 重离子入射导致的晶格温度增加低于SiC材料的熔点, 因此不会造成烧毁. 但由于器件内部最大的晶格温度集中在肖特基结附近, 且肖特基金属的熔点要远低于SiC材料, 因此这可能导致肖特基结的局部损伤, 最终产生漏电通路.
    In this paper, the failure mode and mechanism of silicon carbide (SiC) Schottky barrier diode (SBD) irradiated by high-energy tantalum (Ta) ions are studied. The experimental results show that the reverse bias voltage during irradiation is the key factor causing the failure of SiC SBDs. When the reverse bias of the device is 400 V, the heavy ions will cause the single event burnout (SEB), and a “hole” formed by the melting of SiC material appears in the irradiated device. When the reverse bias is 250–300 V, the failure is manifested as the off state leakage current increases with the ion fluence. The higher the bias voltage of the device, the higher the leakage increase rate caused by heavy ions. For the devices with increased leakage, the leakage channels caused by heavy ions are found in the whole active region, based on microscopic analysis. The TCAD simulation results show that the incidence of heavy ions will lead the lattice temperature to increase in the device, and the maximum lattice temperature increases with bias voltage increasing. When the bias voltage is large enough, the local lattice temperature inside the device reaches the melting point of SiC material, resulting in SEB. When the bias voltage is relatively low, the lattice temperature is lower than the melting point of SiC material, so it will not cause burnout. However, the maximum lattice temperature in the device is concentrated near the Schottky junction, and the melting point of Schottky metal is much lower than that of SiC material. This may lead the Schottky junction to damage locally and eventually produce leakage path.
      通信作者: 彭超, pengchaoceprei@qq.com
    • 基金项目: 国家自然科学基金(批准号: 12075065)、广东省基础与应用基础研究基金(批准号: 2019A1515012213, 2021B1515120043)和广州市科技计划(批准号: 202102021201)资助的课题.
      Corresponding author: Peng Chao, pengchaoceprei@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075065), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2019A1515012213, 2021B1515120043), and the Science and Technology Program of Guangzhou, China (Grant No. 202102021201).
    [1]

    Casady J B, Johnson R W 1996 Solid-State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons Press) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    Ino K, Miura M, Nakano Y, Aketa M, Kawamoto N 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Xi'an, China, June 12–14 2019 p1

    [5]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [6]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron. Dev. 68 5034Google Scholar

    [7]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron. Dev. 65 5434Google Scholar

    [8]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [9]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [10]

    Akturk A, McGarrity J M, Goldsman N, Lichtenwalner D, Hull B, Grider D, Wilkins R 2018 IEEE Trans. Nucl. Sci. 65 1248Google Scholar

    [11]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [12]

    Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron. Dev. 66 2551Google Scholar

    [13]

    Soelkner G, Kaindl W, Treu M, Peters D 2007 Mater. Sci. Forum 556 851Google Scholar

    [14]

    Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Rel. 128 114423Google Scholar

    [15]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [16]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Ferlet-Cavrois V, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [17]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [18]

    Javanainen A, Muinos H V, Nordlund K, Djurabekova F, Galloway K F, Turowski M, Schrimpf R D 2018 IEEE Trans. Device Mater. Reliab. 18 481Google Scholar

    [19]

    于庆奎, 张洪伟, 孙毅, 梅博, 魏志超, 李晓亮, 王贺, 吕贺, 李鹏伟, 曹爽, 唐民 2019 现代应用物理 10 010602Google Scholar

    Yu Q K, Zhang H W, Sun Y, Mei B, Wei Z C, Li X L, Wang H, Li P W, Cao S, Tang M 2019 Modern Appl. Phys. 10 010602Google Scholar

    [20]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar

    [21]

    Synopsys 2014 Sentaurus Device User Guide (Mountain View, CA: Synopsys Inc.) p53

    [22]

    Shoji T, Nishida S, Hamada K, Tadano H 2014 Jap. J. Appl. Phys. 53 04EP03Google Scholar

  • 图 1  实验用SiC-SBD器件 (a) 开封后的光学显微镜顶视图; (b) 截面SEM图

    Fig. 1.  Device of SiC-SBD used in our experiment: (a) Top view of optical microscope after de-capsulated; (b) SEM diagram of cross-section.

    图 2  重离子辐照在线测试布局

    Fig. 2.  On-line test layout of heavy ion irradiation.

    图 3  不同偏置电压Vbias辐照过程中, 器件关态漏电流随时间的变化关系 (a) Vbias = 100—300 V; (b) Vbias = 400 V

    Fig. 3.  Off-state leakage current as a function of time during irradiation under different biases Vbias: (a) Vbias= 100–300 V; (b) Vbias = 400 V.

    图 4  辐照后器件的EMMI测试结果 (a) SEB的器件; (b)关态漏电增加的器件

    Fig. 4.  EMMI analysis results for the irradiated devices: (a) Device of SEB; (b) device with leakage current increase.

    图 5  发生SEB的SBD器件的失效区域SEM图像 (a) 顶视图; (b)—(f) 分别对应位置1—5处的截面图

    Fig. 5.  SEM images of failure area for SBD device with SEB: (a) Top view; (b)–(f) cross-section image corresponding to the line 1–5, respectively.

    图 6  (a) 关态漏电增加器件背面的EMMI测试结果; (b) 320 μm×432 μm区域的局部放大图(图(a)红色虚线范围)

    Fig. 6.  (a) Back-side EMMI analysis result for the irradiated device with leakage current increase; (b) enlarged view of 320 μm×432 μm area (Area surrounded by the red dotted line in Fig.(a)).

    图 7  器件截面SEM形貌图 (a) 辐照后发生漏电增加的器件; (b) 未辐照器件

    Fig. 7.  SEM morphology of the device cross-section: (a) The irradiated device of leakage current increasing; (b) pristine device.

    图 8  发生漏电增加器件辐照前后的I-V特性曲线

    Fig. 8.  I-V characteristics of the device with the leakage current increase before and after irradiation.

    图 9  不同反向偏压下离子入射导致的(a)阴极瞬态电流密度和(b)最大晶格温度随时间的变化

    Fig. 9.  (a) Transient current density and (b) maximum lattice temperature as a function of time when heavy ion strikes under the different bias voltages.

    图 10  离子入射SBD导致的沿离子径迹上的电场分布仿真 (a) Vr = 850 V; (b) Vr = 250 V

    Fig. 10.  Simulated electric field as a function of distance along the ion track: (a) Vr = 850 V; (b) Vr = 250 V.

    图 11  重离子入射不同时间后SiC-SBD器件内部的晶格温度分布 (a) 400 ps; (b) 1 ns; (c) 5 ns; (d) 10 ns

    Fig. 11.  Simulation of lattice temperature in SiC-SBD after the heavy ion incidence at different times: (a) 400 ps; (b) 1 ns; (c) 5 ns; (d) 10 ns.

  • [1]

    Casady J B, Johnson R W 1996 Solid-State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons Press) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    Ino K, Miura M, Nakano Y, Aketa M, Kawamoto N 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Xi'an, China, June 12–14 2019 p1

    [5]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [6]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron. Dev. 68 5034Google Scholar

    [7]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron. Dev. 65 5434Google Scholar

    [8]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [9]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [10]

    Akturk A, McGarrity J M, Goldsman N, Lichtenwalner D, Hull B, Grider D, Wilkins R 2018 IEEE Trans. Nucl. Sci. 65 1248Google Scholar

    [11]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [12]

    Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron. Dev. 66 2551Google Scholar

    [13]

    Soelkner G, Kaindl W, Treu M, Peters D 2007 Mater. Sci. Forum 556 851Google Scholar

    [14]

    Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Rel. 128 114423Google Scholar

    [15]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [16]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Ferlet-Cavrois V, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [17]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [18]

    Javanainen A, Muinos H V, Nordlund K, Djurabekova F, Galloway K F, Turowski M, Schrimpf R D 2018 IEEE Trans. Device Mater. Reliab. 18 481Google Scholar

    [19]

    于庆奎, 张洪伟, 孙毅, 梅博, 魏志超, 李晓亮, 王贺, 吕贺, 李鹏伟, 曹爽, 唐民 2019 现代应用物理 10 010602Google Scholar

    Yu Q K, Zhang H W, Sun Y, Mei B, Wei Z C, Li X L, Wang H, Li P W, Cao S, Tang M 2019 Modern Appl. Phys. 10 010602Google Scholar

    [20]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar

    [21]

    Synopsys 2014 Sentaurus Device User Guide (Mountain View, CA: Synopsys Inc.) p53

    [22]

    Shoji T, Nishida S, Hamada K, Tadano H 2014 Jap. J. Appl. Phys. 53 04EP03Google Scholar

  • [1] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [2] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [3] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [4] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管. 物理学报, 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [5] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [6] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211917
    [7] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [8] 季曾超, 陈仕修, 高深, 陈俊, 田微. 真空二极管辐射微波的机理分析. 物理学报, 2016, 65(14): 145202. doi: 10.7498/aps.65.145202
    [9] 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的射线探测器. 物理学报, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [10] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [11] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [12] 汤晓燕, 戴小伟, 张玉明, 张义门. 套刻偏差对4H-SiC 浮动结结势垒肖特基二极管的影响研究. 物理学报, 2012, 61(8): 088501. doi: 10.7498/aps.61.088501
    [13] 张林, 肖剑, 邱彦章, 程鸿亮. Ti/4H-SiC肖特基势垒二极管抗辐射特性的研究. 物理学报, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [14] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [15] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [16] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [17] 李宏伟, 王太宏. 含InAs自组装量子点肖特基二极管的关联放电效应. 物理学报, 2001, 50(10): 2038-2043. doi: 10.7498/aps.50.2038
    [18] 李宏伟, 王太宏. 含多层InAs量子点的双肖特基势垒二极管输运特性研究. 物理学报, 2001, 50(12): 2506-2510. doi: 10.7498/aps.50.2506
    [19] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
    [20] 林鸿溢. 利用肖特基势垒特性研究4mm波段硅雪崩二极管的杂质分布. 物理学报, 1978, 27(3): 291-302. doi: 10.7498/aps.27.291
计量
  • 文章访问数:  4883
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-06
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回