搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于焦散线方法的自加速光束设计

闻远辉 陈钰杰 余思远

引用本文:
Citation:

基于焦散线方法的自加速光束设计

闻远辉, 陈钰杰, 余思远

Design of accelerating beams based on caustic method

Wen Yuan-Hui, Chen Yu-Jie, Yu Si-Yuan
PDF
导出引用
  • 以艾里光束为代表的自加速光束是一类在自由空间中具有弯曲传播特性的新型特殊光束.这类光束因其具有无衍射、自加速和自修复等奇异特性引起了人们的广泛关注,有望应用于光学微粒操控、激光微加工、全光路由和超分辨成像等诸多领域.由于艾里光束只能沿着抛物线的轨迹传播,限制了其在实际应用中的灵活性,因而设计出能够沿着不同轨迹传播的自加速光束是这一研究领域的关键问题,而基于焦散线方法的自加速光束设计是解决该问题的有效途径之一.这一方法是将设计的传播轨迹与光学焦散线联系起来,通过分析形成该焦散线所需的光线簇构造出对应的初始场分布.基于该原理并经过不断发展,不同类型的自加速光束相继得以实现,并且借助维格纳函数还可以同时实现实空间和傅里叶空间的自加速光束设计,为自加速光束的应用提供了更多的可能性.本文对基于焦散线方法的自加速光束设计原理和进展进行全面介绍.
    Self-accelerating beam is a kind of light beam capable of self-bending in free space without any external potential, of which a typical one is the well-known Airy beam. Such a beam has gained great attention for its extraordinary properties, including nondiffracting, self-accelerating and self-healing, which may have versatile applications in the delivery and guiding of energy, information and objects using light, such as particle manipulation, micro-machining, optical routing, super-resolution imaging, etc. However, since Airy beam can only propagate along parabolic trajectory, which reduces the flexibility in practical applications, thus how to design accelerating beams propagating along arbitrary trajectory is still a crucial problem in this area. One scheme is to keep on finding other analytical solutions of the wave equation besides Airy beam, such as semi-Bessel accelerating beams, Mathius beams, and Weber beams, moving along circular, elliptical, or parabolic trajectories, but it becomes increasingly difficult to find out any more solutions. A more effective solution to this problem is based on the caustic method, which associates the predesigned trajectory with an optical caustics and then obtains the necessary initial field distribution by performing a light-ray analysis of the caustics. This method has been implemented in real space and Fourier space based on Fresnel diffraction integral and angular-spectrum integral, respectively. It has been found recently that they can be unified by constructing Wigner distribution function in phase space. Based on the caustic method, accelerating beams were constructed to propagate along arbitrary convex trajectories in two-dimensional space at first. With continuous development of this method, the types of accelerating beams available have been extending from convex trajectories to nonconvex trajectories, from two-dimensional trajectories to three-dimensional trajectories, and from one main lobe to multiple main lobes, which opens up more possibilities for emerging applications based on accelerating beams. In future, previous researches and applications based on Airy beams will certainly be generalized to all these new types of accelerating beams, and owing to the great flexibility in designing accelerating beams, more application scenarios may emerge in this process with huge development potential. Thus in this paper, we review the principle and progress of the caustic method in designing accelerating beams.
      通信作者: 陈钰杰, chenyj69@mail.sysu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB340000)、国家自然科学基金(批准号:11690031,61323001,61490715,51403244)、广州市科技计划科学研究一般项目(批准号:2018)和中山大学高校基本科研业务费青年教师重点培育项目(批准号:17lgzd06,16lgjc16,15lgpy04,15lgzs095,15lgjc25)资助的课题.
      Corresponding author: Chen Yu-Jie, chenyj69@mail.sysu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB340000), the National Natural Science Foundation of China (Grant Nos. 11690031, 61323001, 61490715, 51403244), the Science and Technology Program of Guangzhou, China (Grant No. 2018), and Sun Yat-sen University Fundamental Research Funds for the Central Universities of China (Grant Nos. 17lgzd06, 16lgjc16, 15lgpy04, 15lgzs095, 15lgjc25).
    [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [2]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [3]

    Zhao J, Chremmos I D, Song D, Christodoulides D N, Efremidis N K, Chen Z 2015 Sci. Rep. 5 12086

    [4]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [5]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photon. 4 103

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [7]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [9]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [10]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Llad C, Ferrier D E K, Čizr T, Gunn-Moore F J, Dholakia K 2014 Nat. Method 11 541

    [11]

    Clerici M, Hu Y, Lassonde P, Milin C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Lgar F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [12]

    Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N, Kivshar Y S 2011 Phys. Rev. Lett. 107 116802

    [13]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [14]

    Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X 2011 Opt. Lett. 36 3191

    [15]

    Epstein I, Arie A 2014 Phys. Rev. Lett. 112 023903

    [16]

    Voloch-Bloch N, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [17]

    Efremidis N K, Paltoglou V, von Klizing W 2013 Phys. Rev. A 87 043637

    [18]

    Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X, Zhang, X 2014 Nat. Commun. 5 4316

    [19]

    Zhao S, Hu Y, Lu J, Qiu X, Cheng J, Burnett I 2014 Sci. Rep. 4 6628

    [20]

    Fu S, Tsur Y, Zhou J, Shemer L, Arie A 2015 Phys. Rev. Lett. 115 034501

    [21]

    Chen Z G, Xu J J, Hu Y, Song D H, Zhang Z, Zhao J Y, Liang Y 2016 Acta Opt. Sin. 36 1026009 (in Chinese) [陈志刚, 许京军, 胡毅, 宋道红, 张泽, 赵娟莹, 梁毅 2016 光学学报 36 1026009]

    [22]

    Wen W, Cai Y J 2017 Laser Optoelectr. Prog. 54 020002 (in Chinese) [文伟, 蔡阳健 2017 激光与光电子学进展 54 020002]

    [23]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [24]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [25]

    Aleahmad P, Miri M, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [26]

    Kravtsov Y A, Orlov Y I 1983 Sov. Phys. Usp. 26 1038

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, Matos O M 2015 Phys. Rev. A 92 033850

    [28]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [29]

    Froehly L, Courvoisier F, Mathis A, Jacquot M, Furfaro L, Giust R, Lacourt P A, Dudley J M 2011 Opt. Express 19 16455

    [30]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2016 Phys. Rev. A 94 013829

    [31]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2017 Phys. Rev. A 95 023825

    [32]

    Wen Y, Chen Y, Zhang Y, Yu S 2017 Chin. Opt. Lett. 15 030011

    [33]

    Wong R 2001 Asymptotic Approximations of Integrals. (Society for Industrial and Applied Mathematics) p76

    [34]

    Li Z, Cheng H, Liu Z, Chen S, Tan J 2016 Adv. Opt. Mater. 4 1230

    [35]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [36]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [37]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X C 2015 Sci. Rep. 5 10529

    [38]

    Dolev I, Epstein I, Arie A 2012 Phys. Rev. Lett. 109 203903

    [39]

    Jarutis V, Matijoius A, Trapani P D, Piskarskas A 2009 Opt. Lett. 34 2129

    [40]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498

  • [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [2]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [3]

    Zhao J, Chremmos I D, Song D, Christodoulides D N, Efremidis N K, Chen Z 2015 Sci. Rep. 5 12086

    [4]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [5]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photon. 4 103

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [7]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [9]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [10]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Llad C, Ferrier D E K, Čizr T, Gunn-Moore F J, Dholakia K 2014 Nat. Method 11 541

    [11]

    Clerici M, Hu Y, Lassonde P, Milin C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Lgar F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [12]

    Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N, Kivshar Y S 2011 Phys. Rev. Lett. 107 116802

    [13]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [14]

    Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X 2011 Opt. Lett. 36 3191

    [15]

    Epstein I, Arie A 2014 Phys. Rev. Lett. 112 023903

    [16]

    Voloch-Bloch N, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [17]

    Efremidis N K, Paltoglou V, von Klizing W 2013 Phys. Rev. A 87 043637

    [18]

    Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X, Zhang, X 2014 Nat. Commun. 5 4316

    [19]

    Zhao S, Hu Y, Lu J, Qiu X, Cheng J, Burnett I 2014 Sci. Rep. 4 6628

    [20]

    Fu S, Tsur Y, Zhou J, Shemer L, Arie A 2015 Phys. Rev. Lett. 115 034501

    [21]

    Chen Z G, Xu J J, Hu Y, Song D H, Zhang Z, Zhao J Y, Liang Y 2016 Acta Opt. Sin. 36 1026009 (in Chinese) [陈志刚, 许京军, 胡毅, 宋道红, 张泽, 赵娟莹, 梁毅 2016 光学学报 36 1026009]

    [22]

    Wen W, Cai Y J 2017 Laser Optoelectr. Prog. 54 020002 (in Chinese) [文伟, 蔡阳健 2017 激光与光电子学进展 54 020002]

    [23]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [24]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [25]

    Aleahmad P, Miri M, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [26]

    Kravtsov Y A, Orlov Y I 1983 Sov. Phys. Usp. 26 1038

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, Matos O M 2015 Phys. Rev. A 92 033850

    [28]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [29]

    Froehly L, Courvoisier F, Mathis A, Jacquot M, Furfaro L, Giust R, Lacourt P A, Dudley J M 2011 Opt. Express 19 16455

    [30]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2016 Phys. Rev. A 94 013829

    [31]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2017 Phys. Rev. A 95 023825

    [32]

    Wen Y, Chen Y, Zhang Y, Yu S 2017 Chin. Opt. Lett. 15 030011

    [33]

    Wong R 2001 Asymptotic Approximations of Integrals. (Society for Industrial and Applied Mathematics) p76

    [34]

    Li Z, Cheng H, Liu Z, Chen S, Tan J 2016 Adv. Opt. Mater. 4 1230

    [35]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [36]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [37]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X C 2015 Sci. Rep. 5 10529

    [38]

    Dolev I, Epstein I, Arie A 2012 Phys. Rev. Lett. 109 203903

    [39]

    Jarutis V, Matijoius A, Trapani P D, Piskarskas A 2009 Opt. Lett. 34 2129

    [40]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498

  • [1] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [2] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用. 物理学报, 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [3] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [4] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [5] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [6] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [7] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [8] 朱艳菊, 江月松, 张崇辉, 辛灿伟. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性. 物理学报, 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [9] 国承山, 王淑贞, 荣振宇, 沙贝. Airy加速光束的局域空间频率及其在光束设计中的应用. 物理学报, 2013, 62(8): 084201. doi: 10.7498/aps.62.084201
    [10] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [11] 常强, 杨艳芳, 何英, 刘海港, 刘键. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究. 物理学报, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [12] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [13] 张前安, 吴逢铁, 郑维涛. 轴棱锥-透镜系统产生局域空心光束中心亮斑的消除. 物理学报, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [14] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换. 物理学报, 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [15] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [16] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [17] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [18] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性. 物理学报, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
    [19] 王喜庆, 吕百达. 贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输. 物理学报, 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
    [20] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
计量
  • 文章访问数:  3297
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-16
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-07-05

基于焦散线方法的自加速光束设计

  • 1. 中山大学电子与信息工程学院, 光电材料与技术国家重点实验室, 广州 510275;
  • 2. 布里斯托大学电气与电子工程系, 布里斯托 BS81TR, 英国
  • 通信作者: 陈钰杰, chenyj69@mail.sysu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2014CB340000)、国家自然科学基金(批准号:11690031,61323001,61490715,51403244)、广州市科技计划科学研究一般项目(批准号:2018)和中山大学高校基本科研业务费青年教师重点培育项目(批准号:17lgzd06,16lgjc16,15lgpy04,15lgzs095,15lgjc25)资助的课题.

摘要: 以艾里光束为代表的自加速光束是一类在自由空间中具有弯曲传播特性的新型特殊光束.这类光束因其具有无衍射、自加速和自修复等奇异特性引起了人们的广泛关注,有望应用于光学微粒操控、激光微加工、全光路由和超分辨成像等诸多领域.由于艾里光束只能沿着抛物线的轨迹传播,限制了其在实际应用中的灵活性,因而设计出能够沿着不同轨迹传播的自加速光束是这一研究领域的关键问题,而基于焦散线方法的自加速光束设计是解决该问题的有效途径之一.这一方法是将设计的传播轨迹与光学焦散线联系起来,通过分析形成该焦散线所需的光线簇构造出对应的初始场分布.基于该原理并经过不断发展,不同类型的自加速光束相继得以实现,并且借助维格纳函数还可以同时实现实空间和傅里叶空间的自加速光束设计,为自加速光束的应用提供了更多的可能性.本文对基于焦散线方法的自加速光束设计原理和进展进行全面介绍.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回