搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

维格纳晶体的实验观测

高幸 薛禹承 姜宇航 毛金海

引用本文:
Citation:

维格纳晶体的实验观测

高幸, 薛禹承, 姜宇航, 毛金海
cstr: 32037.14.aps.73.20241039

Experimental observations of Wigner crystals

Gao Xing, Xue Yu-Cheng, Jiang Yu-Hang, Mao Jin-Hai
cstr: 32037.14.aps.73.20241039
PDF
HTML
导出引用
  • 1934年, 就读于普林斯顿大学的Eugene Wigner预言了电子晶体的存在. 电子同时具有动能和相互作用的势能, 当电子态密度满足一定的条件时, 由于电子之间的排斥作用, 电子会倾向于按规则的晶格结构排布, 形成电子晶体, 也称为维格纳晶体. 近90年来, 维格纳晶体一直吸引着凝聚态物理学家. 1979年, 实验发现在液氦表面存在从电子液体到电子晶体的相变. 之后的实验中观察到在强磁场下的二维电子气中存在二维维格纳晶体的特征. 然而, 在实空间中直接观测二维维格纳晶体仍然是一项艰巨的挑战. 通过WSe2/WS2 moiré超晶格的石墨烯传感层, Li等在实验中观察到了维格纳晶体的实空间形貌. 而在最近的研究中,Tsui等使用高分辨率扫描隧道显微镜测量技术, 直接对贝纳尔堆叠(bernal stacking)双层石墨烯中的磁场诱导维格纳晶体进行成像, 并研究其结构特性与电子密度、磁场和温度的函数关系. 本文将通过4篇代表性工作, 简要介绍维格纳晶体的进展和发展前景.
    In 1934, Eugene Wigner, who was studying at Princeton University, predicted the existence of electronic crystals. Electrons have both kinetic energy and potential energy of interaction. When the density of electronic states satisfies certain conditions, due to the repulsion between electrons, electrons will tend to arrange themselves in a regular lattice structure, forming electron crystals, which is also known as Wigner crystals. For nearly 90 years, Wigner crystals have fascinated condensed matter physicists. Physicists have designed many ingenious semiconductor heterojunctions to obtain lower electron densities and added magnetic fields to achieve larger effective mass of electron. In 1979, experiments revealed the existence of a phase transition from an electron liquid phase to an electron crystal on the surface of liquid helium, and subsequent experiments observed the characteristics of two-dimensional (2D) Wigner crystals in 2D electron gas under high magnetic fields. However, direct observation of 2D Wigner lattices in real space remains a formidable challenge. Through the graphene sensing layer of WSe2/WS2 moiré superlattice, Hongyuan Li, Feng Wang, et al. observed the real-space morphologies of Wigner crystals in their experiments. And in a recent study, researchers used high-resolution scanning tunneling microscopy to directly image magnetic field-induced Wigner crystals in bernal stacking bilayer graphene and investigated their structural properties as a function of electron density, magnetic field, and temperature. In this paper, we will introduce some interesting things about Wigner crystals through four representative researches briefly.
      通信作者: 毛金海, jhmao@ucas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0307800)、国家自然科学基金(批准号: 12074377)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Mao Jin-Hai, jhmao@ucas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0307800), the National Natural Science Foundation of China (Grant No. 12074377), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Wigner E 1934 Phys. Rev. 46 1002Google Scholar

    [2]

    Tanatar B, Ceperley D M 1989 Phys. Rev. B 39 5005Google Scholar

    [3]

    Crandall R, Williams R 1971 Phys. Lett. A 34 404Google Scholar

    [4]

    Andrei E Y, Deville G, Glattli D C, Williams F I B, Paris E, Etienne B 1988 Phys. Rev. Lett. 60 2765Google Scholar

    [5]

    Tsui Y C, He M, Hu Y, Lake E, Wang T, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2024 Nature 628 287Google Scholar

    [6]

    Grimes C C, Adams G 1979 Phys. Rev. Lett. 42 795Google Scholar

    [7]

    Monarkha Y P, Shikin V B 1975 J. Exp. Theor. Phys 41 710

    [8]

    Fisher D S, Halperin B I, Platzman P M 1979 Phys. Rev. Lett. 42 798Google Scholar

    [9]

    Girvin S M, Macdonald A H, Platzman P M 1985 Phys. Rev. Lett. 54 581Google Scholar

    [10]

    Yoon J, Li C C, Shahar D, Tsui D C, Shayegan M 1999 Phys. Rev. Lett. 82 1744Google Scholar

    [11]

    Hubbard J 1978 Phys. Rev. B 17 494Google Scholar

    [12]

    Li H, Li S, Regan E C, et al. 2021 Nature 597 650Google Scholar

    [13]

    Liu X, Farahi G, Chiu C L, Papic Z, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2022 Science 375 321Google Scholar

    [14]

    Farahi G, Chiu C L, Liu X, Papic Z, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2023 Nat. Phys. 19 1482Google Scholar

    [15]

    Coissard A, Wander D, Vignaud H, et al. 2022 Nature 605 51Google Scholar

    [16]

    Li S Y, Zhang Y, Yin L J, He L 2019 Phys. Rev. B 100 085437Google Scholar

    [17]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [18]

    Falson J, Sodemann I, Skinner B, et al. 2021 Nat. Mater. 21 311Google Scholar

    [19]

    Santos M B, Suen Y W, Shayegan M, Li Y P, Engel L W, Tsui D C 1992 Phys. Rev. Lett. 68 1188Google Scholar

    [20]

    Yang F, Zibrov A A, Bai R, Taniguchi T, Young A F 2021 Phys. Rev. Lett. 126 156802Google Scholar

    [21]

    Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48Google Scholar

    [22]

    Nazarov Y V, Khaetskii A V 1994 Phys. Rev. B 49 5077Google Scholar

    [23]

    Li H, Xiang Z, Reddy A P, et al. 2024 Science 385 86Google Scholar

    [24]

    Li H, Xiang Z, Wang T, et al. 2024 Nature 631 765Google Scholar

    [25]

    Hossain M S, Ma M K, Rosales K A V, et al. 2020 Proc. Nat. Acad. Sci. 117 32244Google Scholar

    [26]

    Kosterlitz. J M, Thouless. D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

  • 图 1  (a)随着温度的降低, 突然出现了耦合等离激元-涟波子共振, 该共振仅在 0.457 K 以下出现, 此时电子平面已结晶成三角形晶格; (b)经典二维电子平面的固液相界部分, 数据点表示在不同的电子平均密度$ {N}_{{\mathrm{s}}} $下测量到的熔化温度, 在图中的线上, 每个电子的势能与动能之比$ \varGamma = 137 $[6]

    Fig. 1.  (a) Experimental traces displaying the sudden appearance with decreasing temperature of coupled plasmon-ripplon resonances. The resonances only appear below 0.457 K where the sheet of electrons has crystallized into a triangular lattice. (b) Portion of the solid-liquid phase boundary for a classical, two-dimensional sheet of electrons. The data points denote the melting temperatures measured at various values of the electron areal density, $ {N}_{{\mathrm{s}}} $. Along the line, the quantity Γ, which is a measure of the ratio of potential energy to kinetic energy per electron, Γ is 137[6].

    图 2  密度为$ 0. 77\times {10}^{11}\;{{\mathrm{c}}{\mathrm{m}}}^{-2} $ 时在 28 T 和 60 mK 下的吸收光谱(填充因子$ \nu $ = 1/8.7), 在 $ f{\text{-}}{p}^{3/2} $ 的附图中, $ p $ 值的选择是为了实线经过原点, 虚线是对低混合模式频率的零阶先验计算[4]

    Fig. 2.  Absorption spectra at 28 T and 60 mK for a density of $ 0. 77\times {10}^{11}\;{{\mathrm{c}}{\mathrm{m}}}^{-2} $ (filling factor ν = 1/8.7). In the accompanying plots of $ f{\text{-}}{p}^{3/2} $), the value of p is chosen so that the solid line passes through the origin; the dashed line is the zeroth-order a-priori computation of the frequency of the low-mixing mode[4].

    图 3  (a) n = 1 莫特绝缘体的dI/dV 图($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 160 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 30 V和$ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.53 V); (b) n = 2/3广义维格纳晶体态的dI/dV 图($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 160 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 21.8 V和$ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (c) n = 1/3广义维格纳晶体态的dI/dV图($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 130 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 14.9 V和$ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (d) n = 1/2广义维格纳晶体态的dI/dV 图($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 125 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 18.7 V和$ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (e) 样品结构示意图[12]

    Fig. 3.  (a) dI/dV diagrams for n = 1 Mott insulator ($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 160 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 30 V and $ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.53 V); (b) dI/dV diagrams for n = 2/3 generalized Wigner crystal states ($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 160 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 21.8 V and $ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (c) dI/dV diagrams for n = 1/3 generalized Wigner crystal states ($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 130 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 14.9 V and $ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (d) dI/dV diagrams for n = 1/2 generalized Wigner crystal states ($ {V}_{{\mathrm{b}}{\mathrm{i}}{\mathrm{a}}{\mathrm{s}}} $ = 125 mV, $ {V}_{{\mathrm{B}}{\mathrm{G}}} $ = 18.7 V and $ {V}_{{\mathrm{T}}{\mathrm{G}}} $ = 0.458 V); (e) schematic diagram of sample structure[12].

    图 4  (a) 200 nm×200 nm区域内的空间分辨隧穿电流调制$ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $, 测量采用$ {V}_{{\mathrm{B}}} $ = 4.6 mV, 填充因子ν = 0.317, 图中刻度长度为50 nm; (b) 图4(a)的FFT图像[5]

    Fig. 4.  (a) Spatially resolved tunneling current modulation $ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $ in the 200 nm × 200 nm region, measured with $ {V}_{{\mathrm{B}}} $ = 4.6 mV and fill factor ν = 0.317, scale length in the panel is 50 nm. (b) FFT of the tunnelling current modulation $ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $ in panel (a)[5] .

    图 5  (a)—(h)在一系列不同的填充因子ν下测量的同一区域的空间分辨隧穿电流调制$ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $, $ {V}_{{\mathrm{B}}} $分别为5.2, 5.2, 4.6, 4.4, 4.4, 7.2, 8.0和8.8 mV, 磁场B = 13.95 T, 图中刻度长度为100 nm; (i)—(p)相应的图(a)—(h)中隧穿电流调制$ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $的结构因子S(q), 图中刻度长度为$ 0.2\;{{\mathrm{n}}{\mathrm{m}}}^{-1} $[5]

    Fig. 5.  (a)–(h) Spatially resolved tunneling current modulation $ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $ in the same region measured at a series of different filling factors ν, with $ {V}_{{\mathrm{B}}} $ of 5.2, 5.2, 4.6, 4.4, 4.4, 7.2, 8.0, and 8.8 mV, and a magnetic field B = 13.95 T, the scale lengths in the plots is 100 nm; (i)–(p) corresponding to the tunneling current modulation $ {\text{δ}} {I}_{{\mathrm{d}}{\mathrm{c}}} $ in panel (a)–(h) of the structure factor S(q), scale length in the plots is $ 0.2\;{{\mathrm{n}}{\mathrm{m}}}^{-1} $ [5].

  • [1]

    Wigner E 1934 Phys. Rev. 46 1002Google Scholar

    [2]

    Tanatar B, Ceperley D M 1989 Phys. Rev. B 39 5005Google Scholar

    [3]

    Crandall R, Williams R 1971 Phys. Lett. A 34 404Google Scholar

    [4]

    Andrei E Y, Deville G, Glattli D C, Williams F I B, Paris E, Etienne B 1988 Phys. Rev. Lett. 60 2765Google Scholar

    [5]

    Tsui Y C, He M, Hu Y, Lake E, Wang T, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2024 Nature 628 287Google Scholar

    [6]

    Grimes C C, Adams G 1979 Phys. Rev. Lett. 42 795Google Scholar

    [7]

    Monarkha Y P, Shikin V B 1975 J. Exp. Theor. Phys 41 710

    [8]

    Fisher D S, Halperin B I, Platzman P M 1979 Phys. Rev. Lett. 42 798Google Scholar

    [9]

    Girvin S M, Macdonald A H, Platzman P M 1985 Phys. Rev. Lett. 54 581Google Scholar

    [10]

    Yoon J, Li C C, Shahar D, Tsui D C, Shayegan M 1999 Phys. Rev. Lett. 82 1744Google Scholar

    [11]

    Hubbard J 1978 Phys. Rev. B 17 494Google Scholar

    [12]

    Li H, Li S, Regan E C, et al. 2021 Nature 597 650Google Scholar

    [13]

    Liu X, Farahi G, Chiu C L, Papic Z, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2022 Science 375 321Google Scholar

    [14]

    Farahi G, Chiu C L, Liu X, Papic Z, Watanabe K, Taniguchi T, Zaletel M P, Yazdani A 2023 Nat. Phys. 19 1482Google Scholar

    [15]

    Coissard A, Wander D, Vignaud H, et al. 2022 Nature 605 51Google Scholar

    [16]

    Li S Y, Zhang Y, Yin L J, He L 2019 Phys. Rev. B 100 085437Google Scholar

    [17]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [18]

    Falson J, Sodemann I, Skinner B, et al. 2021 Nat. Mater. 21 311Google Scholar

    [19]

    Santos M B, Suen Y W, Shayegan M, Li Y P, Engel L W, Tsui D C 1992 Phys. Rev. Lett. 68 1188Google Scholar

    [20]

    Yang F, Zibrov A A, Bai R, Taniguchi T, Young A F 2021 Phys. Rev. Lett. 126 156802Google Scholar

    [21]

    Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48Google Scholar

    [22]

    Nazarov Y V, Khaetskii A V 1994 Phys. Rev. B 49 5077Google Scholar

    [23]

    Li H, Xiang Z, Reddy A P, et al. 2024 Science 385 86Google Scholar

    [24]

    Li H, Xiang Z, Wang T, et al. 2024 Nature 631 765Google Scholar

    [25]

    Hossain M S, Ma M K, Rosales K A V, et al. 2020 Proc. Nat. Acad. Sci. 117 32244Google Scholar

    [26]

    Kosterlitz. J M, Thouless. D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [4] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [5] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [9] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [10] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [11] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [12] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [13] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [14] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [15] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [16] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  150
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-11-19
  • 上网日期:  2024-11-26

/

返回文章
返回