搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用四台阶相位板产生涡旋光束

施建珍 杨深 邹亚琪 纪宪明 印建平

引用本文:
Citation:

用四台阶相位板产生涡旋光束

施建珍, 杨深, 邹亚琪, 纪宪明, 印建平

Generation of vortex beams by the four-step phase plates

Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping
PDF
导出引用
  • 涡旋光束的产生与应用是当前光学领域的研究热点. 利用傅里叶级数展开法分析了四台阶相位板的相位结构, 发现四台阶相位板可看作是由一系列不同拓扑荷数的螺旋相位板所组成, 用线偏振光直接照射相位板时, 将产生多级衍射光波, 各级衍射光均为不同拓扑荷数的涡旋光波, 由于多级衍射光波间的干涉导致光强分布偏离轴对称分布, 因而与涡旋光波有一定差距. 在此基础上, 提出了用四台阶相位板产生涡旋光束的新方案, 借助于Mach-Zehnder 干涉仪光路, 两块四台阶相位板产生的衍射光干涉叠加, 通过调节干涉仪光路的相位差, 使一部分衍射级干涉相消, 另一部分衍射级干涉相长, 相互加强, 从而把线偏振光转换为涡旋光束. 数值模拟计算了几种周期数不同的四台阶相位板衍射光强和角动量分布, 并与螺旋相位板进行比较, 证明用简单的四台阶相位板不仅能够获得与用螺旋相位板相同的涡旋光束, 而且可以用周期数较小的四台阶相位板产生具有大拓扑荷数的涡旋光束, 降低了制作相位板的难度.
    The generation and application of the vortex beams are part of the hot topics in the optical field. In this paper, the phase structure of the four-step phase plates, analyzed by Fourier series expansion method, is composed of a series of spiral phase plates. When the phase plate is directly irradiated by linearly polarized light, multi-order diffraction waves with different topological charge numbers are generated. Unlike vortex waves, the intensity distribution of the multi-order diffraction has a deviation from the axial symmetry due to the interference with each other. On this basis, a new scheme is proposed to generate vortex beams by the four-step phase plates. With the help of Mach-Zehnder interferometer, the diffraction waves generated by two pieces of the four-step phase plates overlap each other. By adjusting the phase difference of the Mach-Zehnder interferometer, some orders of diffraction waves generate destructive interference while the others generate constructive interference. Thus the linear polarized light can be converted into vortex beams. The diffraction intensity and angular momentum distributions of the four-step phase plates with different cycle numbers are numerically simulated and compared with the spiral phase plates, we can provethat the vortex beams can be obtained by simple four-step phase plates which are the same as those obtained by spiral phase plates. In addition, the four-step phase plates with a small cycle number can generate vortex beams with a large topological charge number and the fabrication difficulty of the phase plates is reduced.
      通信作者: 纪宪明, jixm@ntu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11034002, 11274114)和国家重点基础研究发展计划(批准号: 2011CB921602)资助的课题.
      Corresponding author: Ji Xian-Ming, jixm@ntu.edu.cn
    • Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11034002, 11274114), and the National Basic Research Program of China (Grant No. 2011CB921602).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Prabhakar S, Kumar A, Banerji J, Singh R P 2011 Opt. Lett. 36 4398

    [3]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [4]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [5]

    Chen Z Y, Pu J X, Zhao D M 2011 Phys. Lett. A 375 2958

    [6]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [7]

    Gecevičius M, Drevinskas R, Beresna M 2014 Appl. Phys. Lett. 104 231110

    [8]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [9]

    Rodenburg B, Mirhosseini M, Malik M 2014 N. J. Phys. 16 033020

    [10]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [11]

    Colin J R S 2014 Opt. Express 22 18128

    [12]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [13]

    Beijersbergen M W, Allen L, Vanderveen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [14]

    Remy P, Fabrice D, Mathieu C 2008 Opt. Express 16 7134

    [15]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [16]

    Kotlyar V V, Khonina S N, Kovalev A A 2006 Opt. Lett. 31 1597

    [17]

    Cottrell D M, Davis J A, Hernandez T J 2011 Opt. Express 19 12873

    [18]

    Yang Y J, Dong Y, Zhao C L, Cai Y J 2013 Opt. Lett. 38 5418

    [19]

    Kotlyar V V, Kovalev A A, Stafeev S S, Nalimov A G 2013 J. Opt. 15 025712

    [20]

    Schemmel P, Pisano G, Maffei B 2014 Opt. Express 22 14712

    [21]

    Ostrovsky A S, Parrao P C, Arrizon V 2013 Opt. Lett. 38 534

    [22]

    Rumala Y S, Leanhardt A E 2013 J. Opt. Soc. Am. B 30 615

    [23]

    Rumala Y S 2014 J. Opt. Soc. Am. B 31 A6

    [24]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103(in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

    [25]

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204(in Chinese) [王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204]

    [26]

    Liang K M 2010 Methods of Mathematical Physics (Beijing: Higher Education Press) p72 (in Chinese) [梁昆淼 2010 数学物理方法 (北京: 高等教育出版社)第72页]

    [27]

    Ji X M, Mu R W, Yin J P 2005 Acta Phys. Sin. 54 5109(in Chinese) [纪宪明, 沐仁旺, 印建平 2005 物理学报 54 5109]

    [28]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Prabhakar S, Kumar A, Banerji J, Singh R P 2011 Opt. Lett. 36 4398

    [3]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [4]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [5]

    Chen Z Y, Pu J X, Zhao D M 2011 Phys. Lett. A 375 2958

    [6]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [7]

    Gecevičius M, Drevinskas R, Beresna M 2014 Appl. Phys. Lett. 104 231110

    [8]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [9]

    Rodenburg B, Mirhosseini M, Malik M 2014 N. J. Phys. 16 033020

    [10]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [11]

    Colin J R S 2014 Opt. Express 22 18128

    [12]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [13]

    Beijersbergen M W, Allen L, Vanderveen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [14]

    Remy P, Fabrice D, Mathieu C 2008 Opt. Express 16 7134

    [15]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [16]

    Kotlyar V V, Khonina S N, Kovalev A A 2006 Opt. Lett. 31 1597

    [17]

    Cottrell D M, Davis J A, Hernandez T J 2011 Opt. Express 19 12873

    [18]

    Yang Y J, Dong Y, Zhao C L, Cai Y J 2013 Opt. Lett. 38 5418

    [19]

    Kotlyar V V, Kovalev A A, Stafeev S S, Nalimov A G 2013 J. Opt. 15 025712

    [20]

    Schemmel P, Pisano G, Maffei B 2014 Opt. Express 22 14712

    [21]

    Ostrovsky A S, Parrao P C, Arrizon V 2013 Opt. Lett. 38 534

    [22]

    Rumala Y S, Leanhardt A E 2013 J. Opt. Soc. Am. B 30 615

    [23]

    Rumala Y S 2014 J. Opt. Soc. Am. B 31 A6

    [24]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103(in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

    [25]

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204(in Chinese) [王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204]

    [26]

    Liang K M 2010 Methods of Mathematical Physics (Beijing: Higher Education Press) p72 (in Chinese) [梁昆淼 2010 数学物理方法 (北京: 高等教育出版社)第72页]

    [27]

    Ji X M, Mu R W, Yin J P 2005 Acta Phys. Sin. 54 5109(in Chinese) [纪宪明, 沐仁旺, 印建平 2005 物理学报 54 5109]

    [28]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL‐2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运的研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231749
    [2] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [3] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [7] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [8] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [9] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [10] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
计量
  • 文章访问数:  5714
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-04-25
  • 刊出日期:  2015-09-05

/

返回文章
返回