搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洞态Ar原子Kα和Kβ伴线和超伴线的理论计算

马堃 焦铮 蒋峰建 叶剑锋 吕海江 陈展斌

引用本文:
Citation:

洞态Ar原子Kα和Kβ伴线和超伴线的理论计算

马堃, 焦铮, 蒋峰建, 叶剑锋, 吕海江, 陈展斌

Theoretical calculation of Kα and Kβ X-ray satellite and hypersatellite structures for hollow argon atoms

Ma Kun, Jiao Zheng, Jiang Feng-Jian, Ye Jian-Feng, Lv Hai-Jiang, Chen Zhan-Bin
PDF
导出引用
  • 基于全相对论多组态Dirac-Fock方法,对L壳层旁观空穴下Ar原子退激衰变辐射K-X射线Kα1,2 (K→L3,2) 和Kβ 1,3 (K→M3,2) 的6908条伴线和超伴线跃迁能、跃迁概率进行了系统计算,计算结果与文献已有数据比较具有很好的一致性.通过对(K- 1L- l,l =0–8)伴线和(K- 2L- l,l =0–8)超伴线跃迁谱线卷积得了其合成谱,给出了L壳层不同空穴数下K-X射线伴线和超伴线的平均能量和平均跃迁强度.结果表明,退激辐射X射线能量以及能移与L壳层空穴个数呈现明显的线性关系.基于结论,进一步给出了跃迁能移与L壳层空穴个数之间的关系表达式.研究结果可以为解释离子、原子碰撞过程中产生的X射线谱提供重要的理论支持.
    A systematical knowledge of the satellite and hypersatellite structures of X-ray transitions is of great interest for various research areas, such as the explanation of the X-ray radiation from universe, plasma diagnostics, extreme ultraviolet (EUV) and X-ray sources and so on. Among these researches, the detailed explanation of the complex structures of X-ray satellites and hypersatellites are crucial for understanding the X-ray emission mechanism and the hollow atom formation mechanism. In this paper, the Kα and Kβ X-ray satellite and hypersatellite structure are theoretically studied for hollow argon atoms with the relativistic multiconfiguration Dirac-Fock (MCDF) method, which includes the Breit and quantum electro-dynamics (QED) corrections. To check the applicability of the method, the transition energies and rates of the diagram lines for Ar are calculated,. and the results are in agreement with previously published data. Then the MCDF calculations of the transition energies and probabilities of Kα 1, 2 (K →L3, 2) and Kβ 1, 3 (K → M3, 2) X-ray satellites and hypersatellites, which originate from the argon atoms with additional vacancies in the L shell, are carried out. To obtain the overall profile of the K X-ray spectrum, the diagram lines are integrated with the satellites and hypersatellites on the assumption that the intensity is proportional to the corresponding transition probability and each discrete line has a Gaussian distribution profile with a full width at half maximum (FWHM) value of 20 eV. From the convoluted profile, we can obtain the dependence of the average transition energy and relative transition intensity of the satellites and hypersatellites on the initial hollow configuration. It is found that the transition energy shift increases linearly with the number of spectator vacancies in the L shell increasing. For instance, the energy shift of the Kα satellite caused by L-shell hole is about 20 eV, and that of the Kβ satellite is 48 eV. While for hypersatellite, the energy shift increases greatly due to the double ionization in the K shell. The energy shift increment of Kα and Kβ hypersatellites corresponding to L vacancy are 21 and 52 eV, respectively. Finally, four simple empirical formulae for estimating the energy shifts of the Kα, Kβ X-ray satellites and hypersatellite for Ar atom with any number of L-shells vacancies are deduced by using the least square method. These results are useful in explaining various K X-ray spectra and better understanding the collision process.
      通信作者: 马堃, makun@hsu.edu.cn
    • 基金项目: 安徽省自然科学基金(批准号:1808085QA22)、安徽省高校优秀青年人才支持计划重点项目(批准号:gxyqZD2016301)、安徽省高校自然科学研究项目(批准号:KJHS2015B01)和黄山学院自然科学研究项目(批准号:2016xskq003)资助的课题.
      Corresponding author: Ma Kun, makun@hsu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJHS2015B01), and the Natural Science Research Project of Huangshan University, China (Grant No. 2016xskq003).
    [1]

    Briand J P, Chevallier P, Tavernier M, Rozet J P 1971 Phys. Rev. Lett. 27 777

    [2]

    Kozio K 2014 J. Quant. Spectrosc. Ra. 149 138

    [3]

    Wang X L, Dong C D, Su M G 2012 Nucl. Instr. Meth. B 280 93

    [4]

    Yerokhin V A, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 90 022509

    [5]

    Steinbrgge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Mller A, Versolato O O, Wille H C, Yava H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502

    [6]

    Czarnota M, Bana D, Berset M, Chmielewska D, Dousse J C, Hoszowska J, Maillard Y P, Mauron O, Pajek M, Polasik M, Raboud P A, Rzadkiewicz J, Słabkowska K, Sujkowski Z 2013 Phys. Rev. A 88 052505

    [7]

    Yuan Y J, Yang J C, Xia J W, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 317 214

    [8]

    Shao C J, Yu D Y, Cai X H, Chen X, Ma K, Evslin J, Xue Y L, Wang W, Kozhedub Y S, Lu R C, Song Z Y, Zhang M W, Liu J L, Yang B, Guo Y P, Zhang J M, Ruan F F, Wu Y H, Zhang Y Z, Dong C Z, Chen X M, Yang Z H 2017 Phys. Rev. A 96 012708

    [9]

    Chen X, Ma K, Dong C Z, Zhang D H, Shao C J, Yu D Y, Cai X H 2015 Nucl. Instr. Meth. B 362 14

    [10]

    Liang T, Ma K, Chen X, Xie L Y, Dong C Z, Shao C J, Yu D Y, Cai X H 2015 Acta Phys. Sin. 64 153401 (in Chinese)[梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红 2015 物理学报 64 153401]

    [11]

    Liang T, Ma K, Wu Z W, Zhang D H, Dong C Z, Shi Y L 2016 Acta Phys. Sin. 65 143401 (in Chinese)[梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙 2016 物理学报 65 143401]

    [12]

    Grant I P 1970 Adv. Phys. 19 747

    [13]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [14]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

  • [1]

    Briand J P, Chevallier P, Tavernier M, Rozet J P 1971 Phys. Rev. Lett. 27 777

    [2]

    Kozio K 2014 J. Quant. Spectrosc. Ra. 149 138

    [3]

    Wang X L, Dong C D, Su M G 2012 Nucl. Instr. Meth. B 280 93

    [4]

    Yerokhin V A, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 90 022509

    [5]

    Steinbrgge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Mller A, Versolato O O, Wille H C, Yava H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502

    [6]

    Czarnota M, Bana D, Berset M, Chmielewska D, Dousse J C, Hoszowska J, Maillard Y P, Mauron O, Pajek M, Polasik M, Raboud P A, Rzadkiewicz J, Słabkowska K, Sujkowski Z 2013 Phys. Rev. A 88 052505

    [7]

    Yuan Y J, Yang J C, Xia J W, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 317 214

    [8]

    Shao C J, Yu D Y, Cai X H, Chen X, Ma K, Evslin J, Xue Y L, Wang W, Kozhedub Y S, Lu R C, Song Z Y, Zhang M W, Liu J L, Yang B, Guo Y P, Zhang J M, Ruan F F, Wu Y H, Zhang Y Z, Dong C Z, Chen X M, Yang Z H 2017 Phys. Rev. A 96 012708

    [9]

    Chen X, Ma K, Dong C Z, Zhang D H, Shao C J, Yu D Y, Cai X H 2015 Nucl. Instr. Meth. B 362 14

    [10]

    Liang T, Ma K, Chen X, Xie L Y, Dong C Z, Shao C J, Yu D Y, Cai X H 2015 Acta Phys. Sin. 64 153401 (in Chinese)[梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红 2015 物理学报 64 153401]

    [11]

    Liang T, Ma K, Wu Z W, Zhang D H, Dong C Z, Shi Y L 2016 Acta Phys. Sin. 65 143401 (in Chinese)[梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙 2016 物理学报 65 143401]

    [12]

    Grant I P 1970 Adv. Phys. 19 747

    [13]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [14]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统. 物理学报, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [4] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计. 物理学报, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [5] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能. 物理学报, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [6] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [7] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [8] 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究. 物理学报, 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周贤明, 肖国青. 不同电荷态的129Xeq+激发Au的X射线发射研究. 物理学报, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱. 物理学报, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [11] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [13] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值. 物理学报, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [14] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [15] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [18] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
计量
  • 文章访问数:  7096
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-05-28
  • 刊出日期:  2018-09-05

/

返回文章
返回