搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于利萨茹椭圆拟合的两步相移轮廓技术

朱进进 吴雨祥 邵晓鹏

引用本文:
Citation:

基于利萨茹椭圆拟合的两步相移轮廓技术

朱进进, 吴雨祥, 邵晓鹏

Two-step phase shifting profilometry based on Lissajous ellipse fitting technique

Zhu Jin-Jin, Wu Yu-Xiang, Shao Xiao-Peng
PDF
HTML
导出引用
  • 相移轮廓术(phase shifting profilometry, PSP)至少需要三帧条纹图提取物体的相位信息. 在动态测量中, 减少条纹数有助于快速测量, 并且可以抑制运动物体存在的相移误差. 为了克服上述问题, 本文提出基于利萨茹椭圆拟合(Lissajous ellipse fitting, LEF)的两步相移轮廓术, 针对条纹背景和调制度分布不均匀导致的LEF相位误差, 给出了误差抑制方法. 实验实现了基于LEF的两步相移动态场景测量, 与多帧PSP相比, 本文所述方法可以减少条纹帧数并且可抑制物体的运动导致的相移误差.
    Phase shifting profilometry (PSP) is an effective technique to reconstruct the three-dimensional shape of object. In general, PSP needs three or more fringe patterns with phase-shifting accurately known to extract the phase distribution of objects. Therefore, the scene and the test objects should remain stationary during capturing the fringe patterns. However, the phase shifts may be unknown in an actual PSP measurement system, especially when measuring the moving object, that is, the phase-shift error may be introduced during the obtaining of the phase-shifting fringe patterns of moving object. In the dynamic measurement scenario, the use of fewer fringe patterns can realize the faster measurement speed and suppress the phase shift error introduced by the moving object. In this paper, a two-step PSP algorithm is proposed based on Lissajous ellipse fitting (LEF). The proposed method uses only two fringe patterns to extract the phase distribution of the object and can suppress the phase shift error caused by the moving object. However, in a practical PSP system, the spatiotemporally varying background intensity and modulation also significantly affect the phase accuracy extracted by LEF, and thus three error-suppressing methods are proposed to reduce the phase error caused by the non-uniform background intensity and modulation. In order to verify the effectiveness of the three error-suppressing methods, we analyze and compare their performances of error suppression under different background intensities and modulations. The advantages of three error-suppressing methods can be summarized as follows. 1) The mean and modulation correction technique has greater advantage than the other two when the background intensity and modulation vary with time. 2) When the background intensity and modulation are relevant to pixel position and the number of fringe patterns, the empirical mode decomposition normalization can more effectively suppress the influence of the non-uniform background intensity and modulation. In experiment, a two-step phase-shifting dynamic measurement based on LEF is conducted. Compared with the traditional PSP which needs at least three fringe patterns, the two-step PSP algorithm successfully extracts the phase with only two fringe patterns and suppresses the phase shift error caused by the motion of the object. Compared with Fourier transform profilometry (FTP), the two-step PSP algorithm can obtain very accurate phase distribution and retain many phase details.
      通信作者: 邵晓鹏, xpshao@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805188)、中国博士后科学基金(批准号: 2019M653547)、陕西省国家自然科学基金(批准号: 2019JQ-121)和中央高校基本科研业务费(批准号: JB180505)资助的课题
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805188), the China Postdoctoral Science Foundation (Grant No. 2019M653547), the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-121), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB180505)
    [1]

    Li B W, Liu Z P, Zhang S 2016 Opt. Express 24 23289Google Scholar

    [2]

    Wu Y X, Cai X J, Zhu J J, Yue H M, Shao X P 2020 Opt. Lasers Eng. 127 105987Google Scholar

    [3]

    Feng S J, Zhang L, Zuo C, Tao T Y, Chen Q, Gu G H 2018 Meas. Sci. Technol. 29 122001Google Scholar

    [4]

    Pan B, Kemao Q, Huang L, Asundi A 2009 Opt. Lett. 34 416Google Scholar

    [5]

    Wang Y J, Zhang S, Oliver J H 2011 Opt. Express 19 8539Google Scholar

    [6]

    Isaac T, Heejoo C, Wook K D 2016 Opt. Express 24 27993Google Scholar

    [7]

    Lilley F, Lalor M J, Burton D R 2000 Opt. Eng. 39 187Google Scholar

    [8]

    Servin M, Garnica G, Estrada J C, Padilla J M 2014 Opt. Express 22 10914Google Scholar

    [9]

    Wang Y, Laughner J I, Efimov I R, Zhang S 2013 Opt. Express 21 5822Google Scholar

    [10]

    Lu L, Xi J T, Yu Y G, Guo Q H 2014 Opt. Lett. 39 6715Google Scholar

    [11]

    Cai Z W, Liu X L, Jiang H, He D, Peng X, Huang S J, Zhang S H 2015 Opt. Express 23 25171Google Scholar

    [12]

    Tao T Y, Chen Q, Da J, Feng S J, Hu Y, Zuo C 2016 Opt. Express 24 20253Google Scholar

    [13]

    Liu Z P, Zibley P C, Zhang S 2018 Opt. Express 26 12632Google Scholar

    [14]

    Wang Y, Liu Z P, Jiang C, Zhang S 2018 Opt. Express 26 34224Google Scholar

    [15]

    Feng S J, Zuo C, Tao T Y, Hu Y, Zhang M L, Chen Q, Gu G H 2018 Opt. Lasers Eng. 103 127Google Scholar

    [16]

    Lu L, Xi J T, Yu Y G, Guo Q H 2013 Opt. Express 21 30610Google Scholar

    [17]

    Wang Z Y, Han B 2004 Opt. Lett. 29 1671Google Scholar

    [18]

    Su X Y, Chen W J 2001 Opt. Lasers Eng. 35 263Google Scholar

    [19]

    徐建亮, 汪敏, 潘慧, 刘晓辉, 戚晓利, 许四祥 2011 物理学报 60 074210Google Scholar

    Xu J L, Wang M, Pan H, Liu X H, Qi X L, Xu S X 2011 Acta Phys. Sin. 60 074210Google Scholar

    [20]

    Hu Y, Chen Q, Zhang Y Z, Feng S J, Tao T Y, Li H, Yin W, Zuo C 2018 Appl. Opt. 57 772Google Scholar

    [21]

    Li B W, An Y T, Zhang S 2016 Appl. Opt. 55 5219Google Scholar

    [22]

    Zhong J G, Weng J W 2005 Opt. Lett. 30 2560Google Scholar

    [23]

    Zhong M, Chen W J, Wang T, Su X Y 2013 Opt. Lasers Eng. 51 1138Google Scholar

    [24]

    Wang S J, Li W L, Wang Y, Jiang Y Y, Jiang S, Zhao R L 2012 J. Multimedia 7 429Google Scholar

    [25]

    Huang N E, Sheng Z, Long S R, Wu M C, Shih W H, Zeng Q, Yen N C, Tung C C, Liu H H 1998 Proc. Math. Phys. Eng. Sci. 454 903Google Scholar

    [26]

    Bernini M B, Galizzi, G E, Federico, A, Kaufmann, G H 2007 Opt. Lasers Eng. 45 723Google Scholar

  • 图 1  PSP测量系统原理

    Fig. 1.  Principle of PSP measurement system.

    图 2  均匀背景强度和调制度下LEF方法的仿真结果 (a) 条纹图; (b) 相位分布; (c) 相位误差

    Fig. 2.  Simulation results of LEF method under the uniform background intensity and modulation: (a) The fringe pattern; (b) the phase distribution; (c) the phase error.

    图 3  不同背景强度下LEF方法的仿真结果

    Fig. 3.  Simulation results of LEF method under different background intensities.

    图 4  不同调制度下LEF方法的仿真结果

    Fig. 4.  Simulation results of LEF method under different modulation.

    图 5  参考相位

    Fig. 5.  Reference phase.

    图 6  仿真1下基归一化LEF的两步PSP测量相位分布

    Fig. 6.  Phase distribution of two-step PSP based on the normalized LEF in simulation condition 1.

    图 7  不同情况下基于归一化LEF的2步PSP测量相位误差

    Fig. 7.  Phase error results of 2-step PSP based on the normalized LEF under different conditions.

    图 8  随机噪声条件下3步相移方法、FTP和基于归一化LEF的两步PSP的测量结果

    Fig. 8.  Measurement results of 3-step phase shift method, FTP and 2-step PSP based on the normalized LEF under random noise.

    图 9  十步相移方法的测量结果 (a) 待测物体; (b) 物体的条纹图; (c) 十步相移方法提取的相位分步; (d) 图(c)中红色方框内的相位细节

    Fig. 9.  Measurement results of ten-step phase shifting method: (a) Test object; (b) fringe pattern of the test object; (c) the reference phase distribution based on ten-step phase-shifting method; (d) the enlarged phase details in red rectangular of Fig. (c).

    图 10  FTP的测量结果 (a) 相位分布; (b) 相位误差; (c) 图(a)中红色框内的相位细节

    Fig. 10.  Measurement results of FTP: (a) Phase distribution; (b) phase error distribution; (c) the enlarged phase details in red rectangular of Fig. (a).

    图 11  基于高斯滤波归一化、EMD归一化、均值和对比度矫正的LEF方法重建结果

    Fig. 11.  Reconstructed results of LEF method based on Gaussian filter normalization, EMD normalization, mean and contrast correction.

    图 12  运动物体的实验结果 (a) 三步相移方法提取的相位; (b) 基于高斯滤波归一化的两步PSP重建的相位; (c) 基于EMD归一化的两步PSP重建相位; (d) 基于均值和调制度矫正的两步PSP重建相位

    Fig. 12.  Experimental results of moving objects: (a) The extracted phase by three-step phase shifting method; (b) the phase obtained from two-step PSP based on Gaussian filter normalization; (c) the phase estimated from two-step PSP based on EMD normalization; (d) the phase estimated from two-step PSP based on the mean value and modulation.

    表 1  不同情况下基于LEF的两步PSP方法计算的相位误差均方根

    Table 1.  Root mean square of phase error calculated by two-step PSP based on the normalized LEF under different conditions.

    N123
    高斯滤波归一化/rad0.00220.07290.0624
    EMD归一化/rad0.02160.03190.0608
    均值和调制度矫正归一化/rad0.00130.08050.0847
    下载: 导出CSV

    表 2  不同情况下基于LEF的两步PSP方法计算的相移误差均方根

    Table 2.  Root mean square of phase-shifting error calculated by two-step PSP based on the normalized LEF under different conditions.

    N123
    高斯滤波归一化/rad00.01250.0117
    EMD归一化/rad0.00170.00390.0108
    均值和调制度矫正归一化/rad00.01830.0206
    下载: 导出CSV
  • [1]

    Li B W, Liu Z P, Zhang S 2016 Opt. Express 24 23289Google Scholar

    [2]

    Wu Y X, Cai X J, Zhu J J, Yue H M, Shao X P 2020 Opt. Lasers Eng. 127 105987Google Scholar

    [3]

    Feng S J, Zhang L, Zuo C, Tao T Y, Chen Q, Gu G H 2018 Meas. Sci. Technol. 29 122001Google Scholar

    [4]

    Pan B, Kemao Q, Huang L, Asundi A 2009 Opt. Lett. 34 416Google Scholar

    [5]

    Wang Y J, Zhang S, Oliver J H 2011 Opt. Express 19 8539Google Scholar

    [6]

    Isaac T, Heejoo C, Wook K D 2016 Opt. Express 24 27993Google Scholar

    [7]

    Lilley F, Lalor M J, Burton D R 2000 Opt. Eng. 39 187Google Scholar

    [8]

    Servin M, Garnica G, Estrada J C, Padilla J M 2014 Opt. Express 22 10914Google Scholar

    [9]

    Wang Y, Laughner J I, Efimov I R, Zhang S 2013 Opt. Express 21 5822Google Scholar

    [10]

    Lu L, Xi J T, Yu Y G, Guo Q H 2014 Opt. Lett. 39 6715Google Scholar

    [11]

    Cai Z W, Liu X L, Jiang H, He D, Peng X, Huang S J, Zhang S H 2015 Opt. Express 23 25171Google Scholar

    [12]

    Tao T Y, Chen Q, Da J, Feng S J, Hu Y, Zuo C 2016 Opt. Express 24 20253Google Scholar

    [13]

    Liu Z P, Zibley P C, Zhang S 2018 Opt. Express 26 12632Google Scholar

    [14]

    Wang Y, Liu Z P, Jiang C, Zhang S 2018 Opt. Express 26 34224Google Scholar

    [15]

    Feng S J, Zuo C, Tao T Y, Hu Y, Zhang M L, Chen Q, Gu G H 2018 Opt. Lasers Eng. 103 127Google Scholar

    [16]

    Lu L, Xi J T, Yu Y G, Guo Q H 2013 Opt. Express 21 30610Google Scholar

    [17]

    Wang Z Y, Han B 2004 Opt. Lett. 29 1671Google Scholar

    [18]

    Su X Y, Chen W J 2001 Opt. Lasers Eng. 35 263Google Scholar

    [19]

    徐建亮, 汪敏, 潘慧, 刘晓辉, 戚晓利, 许四祥 2011 物理学报 60 074210Google Scholar

    Xu J L, Wang M, Pan H, Liu X H, Qi X L, Xu S X 2011 Acta Phys. Sin. 60 074210Google Scholar

    [20]

    Hu Y, Chen Q, Zhang Y Z, Feng S J, Tao T Y, Li H, Yin W, Zuo C 2018 Appl. Opt. 57 772Google Scholar

    [21]

    Li B W, An Y T, Zhang S 2016 Appl. Opt. 55 5219Google Scholar

    [22]

    Zhong J G, Weng J W 2005 Opt. Lett. 30 2560Google Scholar

    [23]

    Zhong M, Chen W J, Wang T, Su X Y 2013 Opt. Lasers Eng. 51 1138Google Scholar

    [24]

    Wang S J, Li W L, Wang Y, Jiang Y Y, Jiang S, Zhao R L 2012 J. Multimedia 7 429Google Scholar

    [25]

    Huang N E, Sheng Z, Long S R, Wu M C, Shih W H, Zeng Q, Yen N C, Tung C C, Liu H H 1998 Proc. Math. Phys. Eng. Sci. 454 903Google Scholar

    [26]

    Bernini M B, Galizzi, G E, Federico, A, Kaufmann, G H 2007 Opt. Lasers Eng. 45 723Google Scholar

  • [1] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [3] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [4] 孙庆华, 潘楠, 雷鸣, 刘文军. 色散渐变光纤中相移控制研究. 物理学报, 2014, 63(15): 150506. doi: 10.7498/aps.63.150506
    [5] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [6] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [7] 范德胜, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇. 基于相移干涉术的光学信息隐藏系统的软件实现. 物理学报, 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [8] 徐建亮, 汪敏, 潘慧, 刘晓辉, 戚晓利, 许四祥. 倾斜式测量系统的傅里叶变换轮廓术研究. 物理学报, 2011, 60(7): 074210. doi: 10.7498/aps.60.074210
    [9] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [10] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究. 物理学报, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [11] 孟祥锋, 蔡履中, 王玉荣, 彭翔. 两步广义相移干涉术的光学实验验证. 物理学报, 2009, 58(3): 1668-1674. doi: 10.7498/aps.58.1668
    [12] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿. 物理学报, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [13] 邓玉强, 王清月, 张志刚. 频率分辨光学开关法行迹相位还原的时频分析. 物理学报, 2006, 55(12): 6454-6458. doi: 10.7498/aps.55.6454
    [14] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [15] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移. 物理学报, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [16] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [17] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [18] 曾民勇, 何志贤. 非谐振区e-He~+散射的位相移动. 物理学报, 1995, 44(2): 196-203. doi: 10.7498/aps.44.196
    [19] 王福恒. 确定散射相移的变分方法. 物理学报, 1974, 23(6): 73-78. doi: 10.7498/aps.23.73
    [20] 时学丹. 核子与氘核散射相移的非单值性. 物理学报, 1962, 18(4): 184-187. doi: 10.7498/aps.18.184
计量
  • 文章访问数:  4657
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-04-27
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回