搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场对协流式微流控装置中乳液液滴生成行为的调控机理

李蕾 张程宾

引用本文:
Citation:

电场对协流式微流控装置中乳液液滴生成行为的调控机理

李蕾, 张程宾

Mechanism for regulation and control of emulsion droplet generation in co-flow microfluidic device via electric field

Li Lei, Zhang Cheng-Bin
PDF
导出引用
  • 建立了直流电场作用下协流式微流控装置中单乳液液滴乳化生成过程的非稳态理论模型,并开展了数值模拟研究,揭示了电场对液滴乳化生成动力学行为的调控机理,阐明了流场/电场参数对液滴乳化生成特性的影响规律.研究结果表明:沿流体流动方向施加静电场可在电物性参数不同的两相流体界面法线方向上产生指向内相流体的电场力,进而强化了内相流体界面的颈缩和断裂,提升了液滴生成速率和形变程度,减小了液滴生成尺寸;在同一毛细数下,随着电毛细数的增大,乳液乳化流型由每周期仅有单一液滴生成的滴式流型转变为每周期有一个主液滴并伴随有卫星液滴生成的滴式流型;随着毛细数和电毛细数的增大,黏性拖曳力以及电场力作用增强,使内相流体颈缩过程后期更容易形成细长型液线,从而有助于诱发液线上产生Rayleigh-Plateau不稳定现象,继而促进卫星液滴的形成.
    Applying the active control of electric field to the preparation of micro-droplets via the traditional microfluidic technology has attracted great attention because it can effectively improve the controllability of the preparing process. Therefore, a full understanding of mechanism for the regulation and control of microdroplets's generation by the microfluidic technology and electric field will provide interesting possibilities for the active control of producing required microdroplets in the practical applications. A transient theoretical model is developed via the coupling of phase-field method and electrostatic model to numerically investigate the generation of the single-phase droplets in a co-flow microfluidic device under the control of a uniform direct-current electric field. Via the numerical simulations based on the transient model, the control mechanisms of the electric field on dynamic behaviors of the droplets generation are revealed, and the influences of flow and electric parameters on the droplets generation characteristics are elucidated. The results indicate that the electrostatic field is able to generate an electric field force toward the inner phase fluid in the normal direction of the interface between two-phase fluids with different electric parameters. The electric field force enhances the necking and breaking of the inner fluid interface, which accelerates the droplets' generation, increases droplet deformation degree, and reduces droplet size. As the electric capillary number increases under the same hydrodynamic capillary number, the droplet formation pattern is transformed from dripping regime with only a single droplet formed per cycle to another dripping regime with one main droplet formed together with the following satellite droplets per cycle. In addition, according to the numerical results in this work, we organize a regime diagram to quantitatively represent the respective regime of these two flow patterns as a function of hydrodynamic capillary number and electric capillary number. The regime diagram indicates that with the increase in hydrodynamic capillary number and electric capillary number, the viscous drag force and electric field force are strengthened, which induces the formation of a slender liquid thread of inner fluid at the later stage of the necking process. This contributes to triggering the Rayleigh-Plateau instability on the liquid thread of inner fluid, and thus facilitating the generation of satellite droplets via the breakup of the liquid thread.
      通信作者: 张程宾, cbzhang@seu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号:U1530260)、国家自然科学基金(批准号:51776037)和江苏省自然科学基金(批准号:BK20170082)资助的课题.
      Corresponding author: Zhang Cheng-Bin, cbzhang@seu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530260), the National Natural Science Foundation of China (Grant No. 51776037), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170082).
    [1]

    Mcclements D J, Li Y 2010 Adv. Colloid Interface Sci. 159 213

    [2]

    Wan J 2012 Polymers 4 1084

    [3]

    Sander J S, Erb R M, Denier C, Studart A R 2012 Adv. Mater. 24 2582

    [4]

    Lee D, Weitz D A 2008 Adv. Mater. 20 3498

    [5]

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701 (in Chinese)[梁宏, 柴振华, 施保昌 2016 物理学报 65 204701]

    [6]

    Chen Y P, Shen C Q, Peterson G P 2015 Ind. Eng. Chem. Res. 54 9257

    [7]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401

    [8]

    Wu L Y, Liu X D, Zhao Y J, Chen Y P 2017 Chem. Eng. Sci. 163 56

    [9]

    Liu X D, Wang C Y, Zhao Y J, Chen Y P 2018 Int. J. Heat Mass Transfer 121 377

    [10]

    Liu X D, Chen Y P 2013 Appl. Therm. Eng. 58 585

    [11]

    Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A 2007 Phys. Rev. Lett. 99 094502

    [12]

    Freiberg S, Zhu X X 2004 Int. J. Pharm. 282 1

    [13]

    Baret J C, Miller O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D 2009 Lab on Chip 9 1850

    [14]

    Chen Q, Qi X B, Chen S F, Liu M F, Pan D W, Li B, Zhang Z W 2017 Acta Phys. Sin. 66 046801 (in Chinese)[陈强, 漆小波, 陈素芬, 刘梅芳, 潘大伟, 李波, 张占文 2017 物理学报 66 046801]

    [15]

    Liu X, Chen Y, Shi M 2013 Int. J. Therm. Sci. 65 224

    [16]

    Wu J, Shi M, Chen Y, Li X 2010 Int. J. Therm. Sci. 49 922

    [17]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609

    [18]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601

    [19]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42

    [20]

    Mohseni K, Dolatabadi A 2006 Ann. N. Y. Acad. Sci. 1077 415

    [21]

    Zagnoni M, Cooper J M 2009 Lab on Chip 9 2652

    [22]

    Hohman M M, Shin M, Rutledge G, Brenner M P 2001 Phys. Fluids 13 2201

    [23]

    Hohman M M, Shin M, Rutledge G, Brenner M P 2001 Phys. Fluids 13 2221

    [24]

    Zhai S L, Luo G S, Liu J G 2001 Chem. Eng. J. 83 55

    [25]

    Luo G S, Jiang W B, Lu Y C, Zhu S L, Dai Y Y 1999 Chem. Eng. J. 73 137

    [26]

    Zhang X, Basaran O A 1996 J. Fluid Mech. 326 239

    [27]

    Kim H, Luo D, Link D, Weitz D A, Marquez M, Cheng Z 2007 Appl. Phys. Lett. 91 133106

    [28]

    Tan S H, Semin B, Baret J C 2014 Lab on Chip 14 1099

    [29]

    Wang X X, Ju X J, Sun S X, Xie R, Wang W, Liu Z, Chu L Y 2015 RSC Adv. 5 34243

    [30]

    Ju X, Wang X, Liu Z, Xie R, Wang W, Chu L Y 2017 Particuology 30 151

    [31]

    Notz P K, Basaran O A 1999 J. Colloid Interface Sci. 213 218

    [32]

    Li Y, Jain M, Ma Y, Nandakumar K 2015 Soft Matter 11 3884

    [33]

    Gong S, Cheng P, Quan X 2010 Int. J. Heat Mass Transfer 53 5863

    [34]

    Wehking J D, Chew L, Kumar R 2013 Appl. Phys. Lett. 103 054101

    [35]

    Liu X D, Wang C Y, Zhao Y J, Chen Y P 2018 Chem. Eng. Sci. 183 215

    [36]

    Nie Z, Seo M S, Xu S, Lewis P C, Mok M, Kumacheva E, Whitesides G M, Garstecki P, Stone H A 2008 Microfluid. Nanofluid. 5 585

    [37]

    O'Konski C T, Jr H C T 1953 J. Phys. Chem. 57 955

    [38]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267

  • [1]

    Mcclements D J, Li Y 2010 Adv. Colloid Interface Sci. 159 213

    [2]

    Wan J 2012 Polymers 4 1084

    [3]

    Sander J S, Erb R M, Denier C, Studart A R 2012 Adv. Mater. 24 2582

    [4]

    Lee D, Weitz D A 2008 Adv. Mater. 20 3498

    [5]

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701 (in Chinese)[梁宏, 柴振华, 施保昌 2016 物理学报 65 204701]

    [6]

    Chen Y P, Shen C Q, Peterson G P 2015 Ind. Eng. Chem. Res. 54 9257

    [7]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401

    [8]

    Wu L Y, Liu X D, Zhao Y J, Chen Y P 2017 Chem. Eng. Sci. 163 56

    [9]

    Liu X D, Wang C Y, Zhao Y J, Chen Y P 2018 Int. J. Heat Mass Transfer 121 377

    [10]

    Liu X D, Chen Y P 2013 Appl. Therm. Eng. 58 585

    [11]

    Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A 2007 Phys. Rev. Lett. 99 094502

    [12]

    Freiberg S, Zhu X X 2004 Int. J. Pharm. 282 1

    [13]

    Baret J C, Miller O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D 2009 Lab on Chip 9 1850

    [14]

    Chen Q, Qi X B, Chen S F, Liu M F, Pan D W, Li B, Zhang Z W 2017 Acta Phys. Sin. 66 046801 (in Chinese)[陈强, 漆小波, 陈素芬, 刘梅芳, 潘大伟, 李波, 张占文 2017 物理学报 66 046801]

    [15]

    Liu X, Chen Y, Shi M 2013 Int. J. Therm. Sci. 65 224

    [16]

    Wu J, Shi M, Chen Y, Li X 2010 Int. J. Therm. Sci. 49 922

    [17]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609

    [18]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601

    [19]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42

    [20]

    Mohseni K, Dolatabadi A 2006 Ann. N. Y. Acad. Sci. 1077 415

    [21]

    Zagnoni M, Cooper J M 2009 Lab on Chip 9 2652

    [22]

    Hohman M M, Shin M, Rutledge G, Brenner M P 2001 Phys. Fluids 13 2201

    [23]

    Hohman M M, Shin M, Rutledge G, Brenner M P 2001 Phys. Fluids 13 2221

    [24]

    Zhai S L, Luo G S, Liu J G 2001 Chem. Eng. J. 83 55

    [25]

    Luo G S, Jiang W B, Lu Y C, Zhu S L, Dai Y Y 1999 Chem. Eng. J. 73 137

    [26]

    Zhang X, Basaran O A 1996 J. Fluid Mech. 326 239

    [27]

    Kim H, Luo D, Link D, Weitz D A, Marquez M, Cheng Z 2007 Appl. Phys. Lett. 91 133106

    [28]

    Tan S H, Semin B, Baret J C 2014 Lab on Chip 14 1099

    [29]

    Wang X X, Ju X J, Sun S X, Xie R, Wang W, Liu Z, Chu L Y 2015 RSC Adv. 5 34243

    [30]

    Ju X, Wang X, Liu Z, Xie R, Wang W, Chu L Y 2017 Particuology 30 151

    [31]

    Notz P K, Basaran O A 1999 J. Colloid Interface Sci. 213 218

    [32]

    Li Y, Jain M, Ma Y, Nandakumar K 2015 Soft Matter 11 3884

    [33]

    Gong S, Cheng P, Quan X 2010 Int. J. Heat Mass Transfer 53 5863

    [34]

    Wehking J D, Chew L, Kumar R 2013 Appl. Phys. Lett. 103 054101

    [35]

    Liu X D, Wang C Y, Zhao Y J, Chen Y P 2018 Chem. Eng. Sci. 183 215

    [36]

    Nie Z, Seo M S, Xu S, Lewis P C, Mok M, Kumacheva E, Whitesides G M, Garstecki P, Stone H A 2008 Microfluid. Nanofluid. 5 585

    [37]

    O'Konski C T, Jr H C T 1953 J. Phys. Chem. 57 955

    [38]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267

  • [1] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [2] 王澄瑶, 李旭, 卢晓云. COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 物理学报, 2021, 70(24): 248706. doi: 10.7498/aps.70.20211807
    [3] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用. 物理学报, 2020, 69(8): 084701. doi: 10.7498/aps.69.20200362
    [7] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] 杨芝, 张悦, 周倩倩, 王玉华. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究. 物理学报, 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [9] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [10] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭. 仿生微流控的发展与应用. 物理学报, 2016, 65(17): 178301. doi: 10.7498/aps.65.178301
    [11] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [12] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [13] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [14] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [15] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [16] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [19] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [20] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
计量
  • 文章访问数:  2893
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-05-20
  • 刊出日期:  2018-09-05

电场对协流式微流控装置中乳液液滴生成行为的调控机理

  • 1. 东南大学能源与环境学院, 能源热转换及其过程测控教育部重点实验室, 南京 210096
  • 通信作者: 张程宾, cbzhang@seu.edu.cn
    基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号:U1530260)、国家自然科学基金(批准号:51776037)和江苏省自然科学基金(批准号:BK20170082)资助的课题.

摘要: 建立了直流电场作用下协流式微流控装置中单乳液液滴乳化生成过程的非稳态理论模型,并开展了数值模拟研究,揭示了电场对液滴乳化生成动力学行为的调控机理,阐明了流场/电场参数对液滴乳化生成特性的影响规律.研究结果表明:沿流体流动方向施加静电场可在电物性参数不同的两相流体界面法线方向上产生指向内相流体的电场力,进而强化了内相流体界面的颈缩和断裂,提升了液滴生成速率和形变程度,减小了液滴生成尺寸;在同一毛细数下,随着电毛细数的增大,乳液乳化流型由每周期仅有单一液滴生成的滴式流型转变为每周期有一个主液滴并伴随有卫星液滴生成的滴式流型;随着毛细数和电毛细数的增大,黏性拖曳力以及电场力作用增强,使内相流体颈缩过程后期更容易形成细长型液线,从而有助于诱发液线上产生Rayleigh-Plateau不稳定现象,继而促进卫星液滴的形成.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回