-
本文测量了30 keV的He2+入射倾斜角度分别为-0.5°,-1°,-1.5°和 -2.5°的聚碳酸酯纳米微孔膜后,出射粒子角度分布、电荷态分布以及相对穿透率随时间的演化.当微孔膜倾斜角度在-0.5°,-1°和-1.5°时,出射的He2+离子始终保持在入射束流方向,出射的He0原子出射方向由微孔孔道方向逐渐转移到入射束流方向,在实验过程中观测到明显的电荷交换,这一现象与之前发现的导向效应不同,微孔内部沉积的电荷斑和微孔内表面原子的短程集体散射作用,克服入射离子的横向动量,使入射离子在微孔内表面以上以类似镜面掠射的方式出射,并发生时间演化效应,主要传输机制为电荷斑辅助的表面以上的类似镜面掠射行为.而当倾斜角度在-2.5°时,出射的He2+离子始终保持在入射束流方向,出射的He0原子始终保持在微孔孔道方向,沉积的电荷斑很难克服入射离子的横向动量,没有时间演化效应,主要传输机制为微孔内表面以下的多次随机非弹性碰撞过程.这一物理图像使中能离子入射不同倾斜角度的微孔膜物理认识更加深入和完整.Nanocapillaries in various materials have received considerable attention due to the rapid growth of the nanotechnology.Recent studies have focused on the transmission of ions through the nanocapillary.The pioneer work,the transmission of 3-keV Ne7+ through polyethylene terephthalate nanocapillaries based on guiding effect has been reported by Stolterfoht et al.(2002 Phys.Rev.Lett.88 133201),indicating that the selforganized charge patches on the capillary walls,which inhibits close contact between the ions and the inner capillary walls,deflecting the trajectories of ions,and thus the ions transmit along the direction of the capillary axis.For the high-energy region (E/Q > 1 MV),Hasegawa et al.(2011 J.Appl.Phys.110 044913) measured the outgoing angle and energy distribution of 2 MeV H+ ions transmitted through a tapered glass capillary.The results indicated that the main transport mechanism of the MeV ions in a tapered glass capillary is the multiple random inelastic collisions below the surface.In the medium-energy region (E/Q from dozens of kV to hundreds of kV),Zhou et al.(2016 Acta Phys.Sin.65 103401) measured the transmission features of the 100-keV protons transmitted through a polycarbonate (PC) membrane at a tilt angle of+1°,the transmitted particles were located around the direction along the incident beam,not along the capillary axis,the transport mechanism of the 100-keV protons in the nanocapillary is the charge-patch-assisted collective scatterings on the surface.With the nanocapillary membranes at different tilt angles,the transverse momentum of the incident ions are different.What is the transmission mechanism of the ions in nanocapillary membranes at different tilt angels? In the present study,we measure the time evolution of the angular distribution,charge state distribution and relatively transmission rate of 30-keV He2+ ions with 500 pA transmitting through a polycarbonate nanocapillary membrane at different incident angles (-0.5°,-1°,-1.5°,-2.5°).It is found that for the small tilt angles (-0.5°,-1°,-1.5°) the transmitted He2+ ions are located around the direction of incident beam,not along the capillary axis,and the directions of the transmitted H0 atoms change from the direction of capillary axis to the direction of incident beam gradually,during the experimental period,the charge exchange is observed.The charge patches in the capillaries overcome the transverse momentum of the incident ions,the ions are transmitted by specular scatterings on the inner surface of capillary,and the main transport mechanism of ions in the nanocapillary at the small tilt angles is the charge-patch-assisted collective scatterings on the surface.For a large tilt angle (-2.5°),the transmitted He2+ ions are located in the direction of the incident beam,and He0 atoms are always in the direction of capillary axis,the charge patches cannot overcome the transverse momentum of the incident ions,and the main transport mechanism of ions in the nanocapillary at the large tilt angles is the multiple random inelastic collisions below the surface.This finding increases the knowledge of charged ions through nanocapillary at different tilt angles within dozens of keV energies in many scientific fields.
-
Keywords:
- incident angle /
- nanocapillary membrane /
- specular scatterings
[1] El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601
[2] Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402
[3] Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697
[4] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915
[5] Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201
[6] Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30
[7] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237
[8] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[9] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202
[10] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712
[11] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901
[12] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711
[13] Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228
[14] Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902
[15] Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150
[16] Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66
[17] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201
[18] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901
[20] Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11
[21] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[22] Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 物理学报 66 093401]
[23] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]
[24] Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]
[25] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
-
[1] El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601
[2] Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402
[3] Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697
[4] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915
[5] Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201
[6] Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30
[7] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237
[8] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[9] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202
[10] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712
[11] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901
[12] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711
[13] Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228
[14] Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902
[15] Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150
[16] Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66
[17] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201
[18] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901
[20] Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11
[21] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[22] Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 物理学报 66 093401]
[23] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]
[24] Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]
[25] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
计量
- 文章访问数: 4948
- PDF下载量: 50
- 被引次数: 0