搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性沉积层上的低掠射角反射与剪切波共振

谢金怀 张海刚 曹德瑨

引用本文:
Citation:

弹性沉积层上的低掠射角反射与剪切波共振

谢金怀, 张海刚, 曹德瑨

Low grazing angle reflection and the shear-wave resonance over a layer of elastic–solids sediment

XIE Jinhuai, ZHANG Haigang, CAO Dejin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 弹性沉积层海底的低掠射角反射存在奇异性极大值的频率特征,其特征对浅海远程声传播会产生显著的影响。针对中国南海东沙海域的一次海底与波导联合测量到的频率间隔小的海底共振与声虹吸现象。通过分析弹性沉积层海底的低掠射角反射特征,理论推导了沉积层与剪切波的共振频率表达式,并分析了海底反射特征对远程声传播的影响。结果表明:在弹性沉积层海底模型下,受剪切波调制的小掠射角反射特征会引起指定频率的剪切波在沉积层发生共振,从而导致水中传播的声能被沉积层禁锢而出现声虹吸效应。进一步根据海底剪切波共振频率相关参数的敏感性及耦合性的分析结果,提出了一种结合海底与波导观测信息的地声参数反演策略用于获取实验海域的底质参数,反演结果验证了弹性沉积层海底模型对水体中声虹吸效应的作用机制。
    The low-grazing-angle reflection from an elastic sediment seabed exhibits singularly enhanced frequency characteristics, which significantly influence long-range sound propagation in shallow water. To study the influence of elastic sedimentary layer seabed environment on long-range sound propagation in shallow waters, we conducted a joint measurement of seabed and waveguide sound propagation experiment in the Dongsha area of the South China Sea. The experiment recorded the simultaneous occurrence of seabed resonance and the sound siphon effect for the first time. Notably, this effect differs from the sound siphon effect observed in low-sound-speed seabed environments, as it exhibits smaller frequency intervals. By analyzing the low-grazing-angle reflection characteristics of the elastic seabed, we derived a theoretical model for the resonance frequencies of shear waves in elastic sediment layers under small grazing angles and investigated their impact on long-range sound propagation. The results demonstrate that under an elastic seabed model, the low-grazing-angle reflection modulated by shear waves induces resonance at specific frequencies within the sediment layer. This traps acoustic energy in the seabed, leading to the sound siphon effect. Furthermore, we analyzed the sensitivity and coupling of key parameters related to shear-wave resonance frequencies. Based on these findings, we developed an inversion strategy that integrates seabed and waveguide observations to estimate geo-acoustic parameters of the experimental area. The inversion results validate the mechanism by which the elastic seabed model contributes to the sound siphon effect in the water column.
  • [1]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (New York: Springer Press) p65

    [2]

    Duncan A J, Gavrilov A N, McCauley R D, Parnum I M, Collis J M 2013 J. Acoust. Soc. Am. 134 207

    [3]

    Godin O A 2021 J. Acoust. Soc. Am. 149 3586

    [4]

    Godin O A 2025 J. Acoust. Soc. Am. 157 314

    [5]

    Zhang S Z, Piao S C 2021 Acta Physica Sinica 70 214304-1 (in Chinese) [张士钊, 朴胜春 2021 物理学报, 70 214304-1]

    [6]

    Akal T, Berkson J 1986 Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustic (New York & London: Nato Scientific Affairs Division Plenum Press) p149

    [7]

    Xie J H, Cao D J, Zhang H G 2024 Journal of Physics: Conference Series 2718 Changsha City, China, October 13-15 2023, p 012070

    [8]

    Fokina M S, Fokin V N 2001 J. Comput. Acoust. 09 1079

    [9]

    Godin O A, Chapman D M F 1999 J. Acoust. Soc. Am. 106 2367

    [10]

    Godin O A, Deal T J, Dong H F 2021 J Acoust Soc Am. 149 49

    [11]

    Dall'Osto D R, Tang D J 2022 J. Acoust. Soc. Am. 151 3473

    [12]

    Kuperman W A, Jensen F B 1980 Bottom-Interacting Ocean Acoustics (New York: Plenum Press) p135

    [13]

    Hermand J P, Siderius M 1997 J. Acoust. Soc. Am. 102 3142

    [14]

    Wilson P S, Knobles D P, Neilsen T B 2020 IEEE J. Ocean. Eng. 45 1

    [15]

    Wilson P S, Knobles D P, Neilsen T B 2022 IEEE J. Oceanic Eng. 47 497

    [16]

    Zhou J X, Li Z L, Zhang X Z, Qin J X 2024 J. Acoust. Soc. Am. 155 3490

    [17]

    Li M Z, Li Z L, Zhou J X, Zhang R H 2019 Acta Phys. Sin. 68 094301 (in Chinese) [李梦竹,李整林,周纪浔,张仁和 2019 物理学报 68 094301]

    [18]

    Zhou J X, Qin J X, Li Z L, Zhang X Z 2024 J. Acoust. Soc. Am. 156 1575

    [19]

    Hughes S J, Ellis D D, Chapman D M F, Philip R S 1990 J. Acoust. Soc. Am. 88 283

    [20]

    Hovem J M, Solberg C E, Tollefsen D 2001 MTS/IEEE Oceans 2001 Honolulu, HI, USA, November 5-8, p715

    [21]

    Zhang H G, Xie J H, Wang X H, Ma Z K 2024 Acta Acustica 49 835 (in Chinese) [张海刚, 谢金怀, 王笑寒, 马志康 2024 声学学报 49 835]

    [22]

    Zheng G X, Piao S C, Dong Y, Gong L J 2024 JASA Express Lett. 4 126004

    [23]

    Li L, Chen Z, Liu J G, Chen H, Yan W, Zhong Y 2014 J. Trop Ocean. 33 54 (in Chinese) [李亮,陈忠,刘建国,陈翰,颜文,仲义 2014 热带海洋学报 33 54].

    [24]

    Vanneste M, Madshus C, Socco V L, Maraschini M, Sparrevik P M, Westerdahl H, Duffaut K, Skomedal E, Bjørnara T I 2011 Geophys. J. Int. 185 221

    [25]

    Socco V L, Boiero D, Maraschini M, Vanneste M, Madshus C, Westerdahl H, Duffaut K, Skomedal E 2011 Geophys. J. Int. 185 237

    [26]

    Acoustics toolbox, Porter M B https://oalib-acoustics.org/ [2025-5-20]

    [27]

    Zhang R H, Li F H 1999 Sci. China, Ser. A Math. 42 739

    [28]

    Brekhovskikh L M, Godin O A 1998 Acoustics of Layered Media. 1: Plane and Quasi-Plane Waves (Vol. 2) (Berlin: Springer Press) p14

    [29]

    Kennedy J, Eberhart R. 1995 IEEE Int Conf on Neural Networks Perth, WA, Australia 1995 p1941

  • [1] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究. 物理学报, doi: 10.7498/aps.72.20230255
    [2] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, doi: 10.7498/aps.72.20230084
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, doi: 10.7498/aps.71.20220494
    [4] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, doi: 10.7498/aps.71.20211915
    [5] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化. 物理学报, doi: 10.7498/aps.68.20181475
    [6] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, doi: 10.7498/aps.67.20180966
    [7] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, doi: 10.7498/aps.66.226601
    [8] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, doi: 10.7498/aps.66.154302
    [9] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, doi: 10.7498/aps.66.114201
    [10] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, doi: 10.7498/aps.65.204704
    [11] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, doi: 10.7498/aps.62.070703
    [12] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, doi: 10.7498/aps.62.134306
    [13] 孙其诚, 张国华, 王博, 王光谦. 半柔性网络剪切模量的计算. 物理学报, doi: 10.7498/aps.58.6549
    [14] 余 辉, 江晓清, 杨建义, 戚 伟, 王明华. 窄光束在掠反射条件下的特性. 物理学报, doi: 10.7498/aps.57.4208
    [15] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, doi: 10.7498/aps.57.5435
    [16] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, doi: 10.7498/aps.56.2422
    [17] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, doi: 10.7498/aps.54.5750
    [18] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, doi: 10.7498/aps.53.1099
    [19] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟. 物理学报, doi: 10.7498/aps.48.1275
    [20] 傅新宇, 董家齐, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运. 物理学报, doi: 10.7498/aps.46.474
计量
  • 文章访问数:  37
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-21

/

返回文章
返回