搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性沉积层上的低掠射角反射与剪切波共振

谢金怀 张海刚 曹德瑨

引用本文:
Citation:

弹性沉积层上的低掠射角反射与剪切波共振

谢金怀, 张海刚, 曹德瑨

Low grazing angle reflection and shear-wave resonance on elastic-solid sediment

XIE Jinhuai, ZHANG Haigang, CAO Dejin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 弹性沉积层海底的低掠射角反射存在奇异性极大值的频率特征, 其特征对浅海远程声传播会产生显著的影响. 针对中国南海东沙海域的一次海底与波导联合测量到的频率间隔小的海底共振与声虹吸现象. 通过分析弹性沉积层海底的低掠射角反射特征, 理论推导了沉积层与剪切波的共振频率表达式, 并分析了海底反射特征对远程声传播的影响. 结果表明: 在弹性沉积层海底模型下, 受剪切波调制的小掠射角反射特征会引起指定频率的剪切波在沉积层发生共振, 从而导致水中传播的声能被沉积层禁锢而出现声虹吸效应. 进一步根据海底剪切波共振频率相关参数的敏感性及耦合性的分析结果, 提出了一种结合海底与波导观测信息的地声参数反演策略用于获取实验海域的底质参数, 反演结果验证了弹性沉积层海底模型对水体中声虹吸效应的作用机制.
    The low-grazing-angle reflection on elastic sediment seabed exhibits abnormally enhanced frequency characteristics, which significantly influences long-range sound propagation in shallow water. To study the influence of elastic sedimentary layer seabed environment on long-range sound propagation in shallow waters, we conduct a joint measurement of seabed and waveguide sound propagation in the Dongsha area of the South China Sea. The measurements show for the first time that the seabed resonance and the sound siphon effect occur simultaneously. Notably, this effect is different from the sound siphon effect observed in low-sound-speed seabed environments, as it exhibits smaller frequency intervals. By analyzing the low-grazing-angle reflection characteristics of the elastic seabed, we develop a theoretical model for the resonance frequencies of shear waves in elastic sediment layers under small grazing angles and investigate their influence on long-range sound propagation. The results indicate that under an elastic seabed model, the low-grazing-angle reflection modulated by shear waves induces resonance at specific frequencies within the sediment layer. This trap acoustic energy in the seabed, leading to the sound siphon effect. Furthermore, we analyze the sensitivity and coupling of key parameters related to the resonance frequency of shear wave. According to these findings, we develop an inversion strategy that integrates seabed and waveguide observations to estimate geo-acoustic parameters of the experimental area. The inversion results validate the mechanism by which the elastic seabed model contributes to the sound siphon effect in the water column.
  • 图 1  实验环境及示意图 (a)声传播实验区域地形及接收设备的位置; (b)海底与波导声传播同步测量实验示意图

    Fig. 1.  Experimental environment and schematic diagram: (a) Topography of sound propagation experiment area and location of receiver; (b) schematic diagram of synchronous measurement experiment of sound propagation in seabed and waveguide.

    图 2  邻近海域多道地震剖面反演结果

    Fig. 2.  Seabed profile inversion using multichannel seismic data in adjacent areas.

    图 3  海底OBS测量的振速信号 (a)声源与OBS距离16.46 km的归一化频谱, 水平质点振速的径向(顶部)和横向(中部)分量, 垂直质点振速分量(底部); (b)距离OBS 2.7—24.8 km范围内15个爆炸声源信号的平均PSD

    Fig. 3.  Particle velocity signal measured by OBS: (a) Normalized spectrum of a sound source and OBS at a distance of 16.46 km, normalized spectra of the radial (top) and cross-range (middle) components of the horizontal particle velocity, as well as vertical particle velocity (bottom); (b) the power spectral density averages 15 explosion sound source signals within the 2.7–24.8 km range from the OBS.

    图 4  VLA测量的爆炸声信号 (a)声源与VLA距离19.2—50.0 km范围的PSD, 其中每个距离的PSD级采用VLA所有阵元数据的平均结果; (b)声源与VLA距离20.8 km的PSD

    Fig. 4.  Explosion sound signal measured by VLA: (a) PSD within the range of 19.2–50.0 km from the sound source and VLA, where the PSD of each distance is the average result of all array metadata of the VLA; (b) PSD with a distance of 20.8 km between the sound source and the VLA.

    图 5  三个不同距离声源的20—150 Hz频段的PSD在37 Hz存在能量凹陷

    Fig. 5.  The PSD of the 20~150 Hz frequency band has an energy depression at 37 Hz.

    图 6  弹性沉积层海底地声模型

    Fig. 6.  Submarine geo-acoustic model of elastic sedimentary layer.

    图 7  海底反射损失与频率的关系, 其中反射损失是利用Porter[26]的BOUNCE程序计算获得 (a)低声速液态沉积层海底的地声参数见表1; (b)弹性沉积层海底的地声参数如表2; (c)高声速液态沉积海底采用了表2中除了剪切波参数以外的所有参数

    Fig. 7.  Relationship between seabed reflection loss and frequency. Porter’s BOUNCE program calculates the reflection loss: (a) The geo-acoustic parameters of the seabed of low-velocity liquid sediments are shown in Table 1; (b) geo-acoustic parameters of elastic sedimentary seabed are shown in Table 2; (c) all the parameters except the shear wave parameters in Table 2 are used in the high-velocity liquid deposition seabed.

    图 8  弹性海底低掠射角反射与剪切波共振的频率关系. 绿色、蓝色和黑色曲线分别表示掠射角为2°, 5°和10°的反射损失曲线; 红色圆圈是沉积层剪切波共振频率((8)式)

    Fig. 8.  Frequency relationship between low grazing angle reflection and shear wave resonance in elastic seabed. The green, blue, and black curves represent the reflection loss curves for grazing angles of 2°, 5°, and 10°, respectively; the red circle is the shear wave resonance frequency (Eq. (8)).

    图 9  传播损失的频率特征, 其中声源深度为50 m, 接收深度为80 m (a)低声速液态沉积层海底; (b)弹性沉积层海底; (c)高声速液态海底

    Fig. 9.  Frequency characteristics of propagation loss, where the sound source depth is 50 m, and the receiving depth is 80 m: (a) Low-velocity liquid sediments seabed; (b) the elastic sedimentary seabed; (c) the high-velocity liquid seabed.

    图 10  剪切波波共振频率小掠射角反射损失特征的敏感性分析 (a)底部反射损失与剪切波衰减的关系, 同一环境取低掠射角($\theta < \arccos \left( {{{{c_1}} \mathord{\left/ {\vphantom {{{c_1}} {{c_{{\text{p2}}}}}}} \right. } {{c_{{\text{p2}}}}}}} \right)$)的反射损失极大值; (b)共振频率263.1 Hz对剪切波衰减的敏感性; (c)共振频率263.1 Hz对基底剪切波衰减的敏感性; (d)共振频率263.1 Hz对纵波衰减的敏感性

    Fig. 10.  Sensitivity analysis of small grazing angle reflection loss characteristics of shear wave resonance frequency: (a) Relationship between bottom reflection loss and shear wave attenuation, and the maximum reflection loss of low grazing angle ($\theta < $$ \arccos \left( {{{{c_1}} \mathord{\left/ {\vphantom {{{c_1}} {{c_{{\text{p2}}}}}}} \right. } {{c_{{\text{p2}}}}}}} \right)$) is taken in the same environment; (b) sensitivity of the resonance frequency 263.1 Hz to the shear wave attenuation: (c) sensitivity of the resonance frequency 263.1 Hz to the base shear wave attenuation; (d) sensitivity of the resonance frequency 263.1 Hz to the longitudinal wave attenuation.

    图 11  剪切波共振频率闭式表达式的耦合关系

    Fig. 11.  Coupling relationship of shear wave resonance frequency closed-form expression.

    图 12  (a) OBS接收的振速信号水平分量和垂直分量的时域波形, 该声源距离OBS 19.82 km; (b)利用复声强法计算的0—20 km声源的俯仰角

    Fig. 12.  (a) Time domain waveforms of the horizontal and vertical components of the particle velocity signal received by the OBS. The sound source is 19.82 km away from the OBS; (b) the elevation angle of 0–20 km sound source is calculated by using the complex sound intensity method.

    图 13  反演策略

    Fig. 13.  Inversion strategy.

    图 14  实际波导环境的弹性沉积层海底参数敏感性分析, 红色虚线为真值

    Fig. 14.  Sensitivity analysis of seabed parameters of elastic sediment layer in actual waveguide environment, Red dotted line is true value.

    图 15  根据反演结果计算的50—250 Hz频段传播损失与实验测量得到的传播损失结果对比 (a)声源与VLA的距离20.8 km; (b)声源与VLA的距离24.99 km

    Fig. 15.  Propagation loss in the 50–250 Hz band calculated from the inversion results is compared with the experimental measurement: (a) Distance from a sound source to VLA is 20.8 km; (b) from the sound source to VLA is 24.99 km.

    表 1  低声速沉积层海底的声学参数

    Table 1.  Acoustic parameters of low sound velocity sediment seabed.

    海底声学参数 压缩波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$ 层厚/${\text{m}}$ 密度/${\text{(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$ 压缩波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$
    水介质层 1499 100 1.0 0
    沉积层 1465 15 1.6 0.1
    基底 1650 1.9 0.2
    下载: 导出CSV

    表 2  弹性沉积层海底参数

    Table 2.  Acoustic parameters of elastic sediment seabed.

    声学参数压缩波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$剪切波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$层厚/${\text{m}}$密度/${\text{(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$压缩波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$剪切波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$
    水层14991001.00
    沉积层1600700151.60.10.1
    基底280016002.20.20.2
    下载: 导出CSV

    表 3  弹性沉积层海底地声参数反演结果

    Table 3.  Inversion results of seafloor geoacoustic parameters of the elastic sedimentary layer.

    反演参数寻优区间反演结果
    沉积层${c_{{\text{p2}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1550—18001640.7
    ${c_{{\text{s2}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$500—800681.0
    $h{\text{/m}}$2—4014.5
    ${\rho _{2}}{\text{/(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$1.55—2.11.65
    ${\alpha _{{\text{p2}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.05—0.50.14
    ${\alpha _{{\text{s2}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.05—0.50.11
    基底${c_{{\text{p3}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1850—30002476
    ${c_{{\text{s3}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1510—18001757.6
    ${\rho _3}{\text{/(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$2.15—4.03.5
    ${\alpha _{{\text{p3}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.1—0.60.22
    ${\alpha _{{\text{s3}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.1—0.60.29
    下载: 导出CSV
  • [1]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (New York: Springer Press) p65

    [2]

    Duncan A J, Gavrilov A N, McCauley R D, Parnum I M, Collis J M 2013 J. Acoust. Soc. Am. 134 207Google Scholar

    [3]

    Godin O A 2021 J. Acoust. Soc. Am. 149 3586Google Scholar

    [4]

    Godin O A 2025 J. Acoust. Soc. Am. 157 314Google Scholar

    [5]

    张士钊, 朴胜春 2021 物理学报 70 214304Google Scholar

    Zhang S Z, Piao S C 2021 Acta Phys. Sin. 70 214304Google Scholar

    [6]

    Akal T, Berkson J 1986 Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustic (New York & London: Nato Scientific Affairs Division Plenum Press) p149

    [7]

    Xie J H, Cao D J, Zhang H G 2024 Journal of Physics: Conference Series 2718 Changsha City, China, October 13–15, 2023 p 012070

    [8]

    Fokina M S, Fokin V N 2001 J. Comput. Acoust. 09 1079Google Scholar

    [9]

    Godin O A, Chapman D M F 1999 J. Acoust. Soc. Am. 106 2367Google Scholar

    [10]

    Godin O A, Deal T J, Dong H F 2021 J Acoust Soc Am. 149 49Google Scholar

    [11]

    Dall'Osto D R, Tang D J 2022 J. Acoust. Soc. Am. 151 3473Google Scholar

    [12]

    Kuperman W A, Jensen F B 1980 Bottom-Interacting Ocean Acoustics (New York: Plenum Press) p135

    [13]

    Hermand J P, Siderius M 1997 J. Acoust. Soc. Am. 102 3142

    [14]

    Wilson P S, Knobles D P, Neilsen T B 2020 IEEE J. Ocean. Eng. 45 1

    [15]

    Wilson P S, Knobles D P, Neilsen T B 2022 IEEE J. Oceanic Eng. 47 497Google Scholar

    [16]

    Zhou J X, Li Z L, Zhang X Z, Qin J X 2024 J. Acoust. Soc. Am. 155 3490Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔, 张仁和 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X, Zhang R H 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    Zhou J X, Qin J X, Li Z L, Zhang X Z 2024 J. Acoust. Soc. Am. 156 1575Google Scholar

    [19]

    Hughes S J, Ellis D D, Chapman D M F, Philip R S 1990 J. Acoust. Soc. Am. 88 283Google Scholar

    [20]

    Hovem J M, Solberg C E, Tollefsen D 2001 Annual Conference of the Marine-Technology-Society Honolulu, HI, USA, November 5–8, 2001 p715

    [21]

    张海刚, 谢金怀, 王笑寒, 马志康 2024 声学学报 49 835Google Scholar

    Zhang H G, Xie J H, Wang X H, Ma Z K 2024 Acta Acustica 49 835Google Scholar

    [22]

    Zheng G X, Piao S C, Dong Y, Gong L J 2024 JASA Express Lett. 4 126004Google Scholar

    [23]

    李亮, 陈忠, 刘建国, 陈翰, 颜文, 仲义 2014 热带海洋学报 33 54Google Scholar

    Li L, Chen Z, Liu J G, Chen H, Yan W, Zhong Y 2014 J. Trop. Oceanogr. 33 54Google Scholar

    [24]

    Vanneste M, Madshus C, Socco V L, Maraschini M, Sparrevik P M, Westerdahl H, Duffaut K, Skomedal E, Bjørnara T I 2011 Geophys. J. Int. 185 221Google Scholar

    [25]

    Socco V L, Boiero D, Maraschini M, Vanneste M, Madshus C, Westerdahl H, Duffaut K, Skomedal E 2011 Geophys. J. Int. 185 237Google Scholar

    [26]

    Acoustics toolbox, Porter M B https://oalib-acoustics.org/ [2025-5-20]

    [27]

    Zhang R H, Li F H 1999 Sci. China, Ser. A Math. Phys. Astron. 42 739Google Scholar

    [28]

    Brekhovskikh L M, Godin O A 1998 Acoustics of Layered Media. 1: Plane and Quasi-Plane Waves (Vol. 2) (Berlin: Springer Press) p14

    [29]

    Kennedy J, Eberhart R 1995 IEEE Int Conf on Neural Networks Perth, WA, Australia, November 26–December 2, 1995 p1941

  • [1] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究. 物理学报, doi: 10.7498/aps.72.20230255
    [2] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, doi: 10.7498/aps.72.20230084
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, doi: 10.7498/aps.71.20220494
    [4] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, doi: 10.7498/aps.71.20211915
    [5] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化. 物理学报, doi: 10.7498/aps.68.20181475
    [6] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, doi: 10.7498/aps.67.20180966
    [7] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, doi: 10.7498/aps.66.226601
    [8] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, doi: 10.7498/aps.66.154302
    [9] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, doi: 10.7498/aps.66.114201
    [10] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, doi: 10.7498/aps.65.204704
    [11] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, doi: 10.7498/aps.62.070703
    [12] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, doi: 10.7498/aps.62.134306
    [13] 孙其诚, 张国华, 王博, 王光谦. 半柔性网络剪切模量的计算. 物理学报, doi: 10.7498/aps.58.6549
    [14] 余 辉, 江晓清, 杨建义, 戚 伟, 王明华. 窄光束在掠反射条件下的特性. 物理学报, doi: 10.7498/aps.57.4208
    [15] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, doi: 10.7498/aps.57.5435
    [16] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, doi: 10.7498/aps.56.2422
    [17] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, doi: 10.7498/aps.54.5750
    [18] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, doi: 10.7498/aps.53.1099
    [19] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟. 物理学报, doi: 10.7498/aps.48.1275
    [20] 傅新宇, 董家齐, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运. 物理学报, doi: 10.7498/aps.46.474
计量
  • 文章访问数:  385
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-06-09
  • 上网日期:  2025-06-21

/

返回文章
返回