搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小液滴撞击壁面传热特性数值分析

刘联胜 刘轩臣 贾文琪 田亮 杨华 段润泽

引用本文:
Citation:

小液滴撞击壁面传热特性数值分析

刘联胜, 刘轩臣, 贾文琪, 田亮, 杨华, 段润泽

Numerical analysis of heat transfer characteristics of small droplets impacting on wall

Liu Lian-Sheng, Liu Xuan-Chen, Jia Wen-Qi, Tian Liang, Yang Hua, Duan Run-Ze
PDF
HTML
导出引用
  • 小液滴撞击壁面现象在喷雾冷却等领域都有广泛应用. 为研究小液滴(微米)撞击热壁面(非沸腾区)传热过程, 建立了二维液滴撞壁瞬态模型, 并采用相场方法对小液滴换热过程中对流热通量和导热热通量的大小进行了对比. 研究结果表明: 液滴撞击壁面初期形成“冷斑”, 有利于小液滴与壁面的传热; 小液滴撞击壁面过程中热通量峰值存在于三相接触点附近, 数量级在105—106 W/m2; 小液滴撞击壁面过程中受壁面浸润性和液滴尺寸对传导热通量的影响较为显著, 而速度和液滴尺寸对对流热通量的影响较为显著; 大多数情况下, 小液滴撞击壁面传导热通量数量级在103—105 W/m2, 对流热通量数量级在104—106 W/m2, 对流热通量大于传导热通量, 在整个换热过程中占据主导地位.
    The phenomenon of small droplets impacting on the wall is widely used in fields such as spray cooling. In recent years, the research on the behavior of droplets impacting on a wall has been extensively concerned by scholars. However, current research mainly focuses on the flow and heat transfer characteristics of large droplets (millimeters) impacting on a hot wall. Since the dynamic and thermodynamic characteristics of small droplets (micrometers) impacting on the hot wall are significantly different from those of large droplets, the research on the behavior of small droplets impacting on the hot wall will further facilitate the understanding of the heat transfer mechanism. In order to study the heat transfer process of small droplets impacting on the hot wall (non-boiling zone), a two-dimensional transient model of droplets impacting on the wall is established, and the phase field method is used to analyze the convective heat flux and heat conduction heat flux in the heat transfer process of small droplets. The effect of velocity, wettability and droplet size on the heat transfer characteristics of droplets impacting on the wall are explored. The simulation results show that the phase field method is feasible in studying the behavior of small droplets impacting on the wall. Furthermore, the research results show that the initial stage of droplet impacting on the wall is “cold spot”, which is conducive to the heat transfer between the small droplet and the wall. The peak heat flux during the small droplet impacting on the wall is near the three-phase contact point, and it is on the order of 105–106 W/m2. The influence of wall wettability and droplet size on the conductive heat flux during the small droplets impacting on the wall are more significant, while velocity and droplet size have a significant influence on convective heat flux. In most cases, the conduction heat flux of small droplets impacting on the wall is about 103–105 W/m2, and the convective heat flux is about 104–106 W/m2. The convective heat flux is larger than the conduction heat flux, and it plays a dominant role in the whole process of heat transfer. The above conclusions are helpful in enriching the heat transfer mechanism of small droplets impacting on the hot wall, and implementing the spray cooling and other technologies.
      通信作者: 段润泽, duanrunze@hebut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51276055, 51806057)、天津市科技计划项目(批准号: 18YFCZZC00250, 19YFZCsF00850)、河北省自然基金项目(批准号: E2019202460)和河北工业大学(张北)产业技术研究院(批准号: ZBYJY201902)资助的课题
      Corresponding author: Duan Run-Ze, duanrunze@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51276055, 51806057), the Tianjin Science and Technology Planning Project, China (Grant Nos. 18YFCZZC00250, 19YFZCsF00850), the Natural Foundation of Hebei Province, China (Grant No. E2019202460), and the Hebei University of Technology (Zhangbei) Industrial Technology Research Institute, China(Grant No.ZBYJY201902)
    [1]

    Horacek B, Kiger K T, Kim J 2005 Int. J. Heat Mass Transfer 48 1425Google Scholar

    [2]

    Pais M R, Chow L C, Mahefkey E T 1992 Int. J. Heat Transfer 114 211Google Scholar

    [3]

    Opoku R, Kizito J P 2020 RINENG 6 100Google Scholar

    [4]

    Yang Y, Yang L, Du X, Yang Y 2019 Appl. Therm. Eng. 163 114401Google Scholar

    [5]

    Yang H, Rong L, Liu X, Liu L, Fan M, Pei N 2020 Energy Rep. 6 906Google Scholar

    [6]

    Hajidavalloo E, Eghtedari H 2010 Int. J. Refrig. 33 982Google Scholar

    [7]

    Zhang C, Liu H 2016 Phys. Fluids. 28 062107Google Scholar

    [8]

    Zhang Q, Zhu W B 2021 J. Propul. Technol 1 (accepted)

    [9]

    Visser C W, Tagawa Y, Sun C, Lohse D 2012 Soft Matter 8 10732Google Scholar

    [10]

    Yarin A L, Weiss D A 1995 J. Fluid Mech. 283 141Google Scholar

    [11]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Fl. 22 201Google Scholar

    [12]

    Lee J, Kim J, Kiger K T 2001 Int. J. Heat Fluid Fl. 22 188Google Scholar

    [13]

    Hase M, Weigand B 2004 Int. J. Numer. Method. H. 14 85Google Scholar

    [14]

    Berberovic E, Roisman I V, Jakirlic S, Tropea C 2011 Int. J. Heat Fluid Fl. 32 785Google Scholar

    [15]

    叶学民, 李永康, 李春曦 2016 物理学报 23 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. sin. 23 234701Google Scholar

    [16]

    Guggilla G, Narayanaswamy R, Pattamatta A 2019 Exp. Therm. Fluid Sci. 110 109916Google Scholar

    [17]

    Gelissen E J, Geld C W M, Baltussen M W, Kuerten J G M 2019 Int. J. Multiphase Flow 123 103173Google Scholar

    [18]

    黄龙, 刘昭亮, 王玉洁 2020 制冷与空调 34 283Google Scholar

    Huang L, Liu Z L, Wang Y J 2020 Refrig. Air-Cond. 34 283Google Scholar

    [19]

    Cahn J W 1961 Acta Metall. Sin 9 795Google Scholar

    [20]

    Van D, Dirkjan B, Le C C 2004 Phys. Fluids 16 3403Google Scholar

  • 图 1  计算物理模型

    Fig. 1.  Computational physical model.

    图 2  网格无关性验证

    Fig. 2.  Grid independence verification.

    图 3  实验结果与模拟结果对比

    Fig. 3.  Comparison of experimental results and simulation results.

    图 4  不同时刻温度场及流场分布

    Fig. 4.  Temperature field and flow field distribution at different times.

    图 5  壁面不同位置热流密度分布, 与固液界面垂直距离分别为 (a) 0 μm, (b) 10 μm, (c) 20 μm, (d) 30 μm, (e) 40 μm, (f) 50 μm, (g)具体位置示意图

    Fig. 5.  The heat flux distribution at different positions on the wall, the vertical distances from the solid-liquid interface are respectively (a) 0 μm, (b) 10 μm, (c) 20 μm, (d) 30 μm, (e) 40 μm, (f) 50 μm, (g) Specific location diagram

    图 6  不同速度下传导及对流热通量随时间的变化 (a) 0.5 m/s; (b) 1 m/s; (c) 2 m/s; (d)不同速度下总热通量随时间的变化

    Fig. 6.  Conductive and convective heat flux changes with time at different speeds: (a) 0.5 m/s; (b) 1 m/s; (c) 2 m/s; (d) total heat flux changes with time at different speeds.

    图 7  不同浸润性下传导及对流热通量随时间的变化 (a) θ = 45°; (b) θ = 90°; (c) θ = 135°; (d)不同浸润性下总热通量随时间变化

    Fig. 7.  Conduction and convective heat flux changes with time under different wettability: (a) θ = 45°; (b) θ = 90°; (c) θ = 135°; (d) total heat flux varies with time under different wettability.

    图 8  不同液滴尺寸下传导及对流热通量随时间的变化 (a) 20 μm; (b) 30 μm; (c) 50 μm; (d)不同液滴尺寸下总热通量随时间变化

    Fig. 8.  Conduction and convection heat flux changes with time under different droplet sizes: (a) 20 μm; (b) 30 μm; (c) 50 μm; (d) total heat flux changes with time under different droplet sizes.

  • [1]

    Horacek B, Kiger K T, Kim J 2005 Int. J. Heat Mass Transfer 48 1425Google Scholar

    [2]

    Pais M R, Chow L C, Mahefkey E T 1992 Int. J. Heat Transfer 114 211Google Scholar

    [3]

    Opoku R, Kizito J P 2020 RINENG 6 100Google Scholar

    [4]

    Yang Y, Yang L, Du X, Yang Y 2019 Appl. Therm. Eng. 163 114401Google Scholar

    [5]

    Yang H, Rong L, Liu X, Liu L, Fan M, Pei N 2020 Energy Rep. 6 906Google Scholar

    [6]

    Hajidavalloo E, Eghtedari H 2010 Int. J. Refrig. 33 982Google Scholar

    [7]

    Zhang C, Liu H 2016 Phys. Fluids. 28 062107Google Scholar

    [8]

    Zhang Q, Zhu W B 2021 J. Propul. Technol 1 (accepted)

    [9]

    Visser C W, Tagawa Y, Sun C, Lohse D 2012 Soft Matter 8 10732Google Scholar

    [10]

    Yarin A L, Weiss D A 1995 J. Fluid Mech. 283 141Google Scholar

    [11]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Fl. 22 201Google Scholar

    [12]

    Lee J, Kim J, Kiger K T 2001 Int. J. Heat Fluid Fl. 22 188Google Scholar

    [13]

    Hase M, Weigand B 2004 Int. J. Numer. Method. H. 14 85Google Scholar

    [14]

    Berberovic E, Roisman I V, Jakirlic S, Tropea C 2011 Int. J. Heat Fluid Fl. 32 785Google Scholar

    [15]

    叶学民, 李永康, 李春曦 2016 物理学报 23 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. sin. 23 234701Google Scholar

    [16]

    Guggilla G, Narayanaswamy R, Pattamatta A 2019 Exp. Therm. Fluid Sci. 110 109916Google Scholar

    [17]

    Gelissen E J, Geld C W M, Baltussen M W, Kuerten J G M 2019 Int. J. Multiphase Flow 123 103173Google Scholar

    [18]

    黄龙, 刘昭亮, 王玉洁 2020 制冷与空调 34 283Google Scholar

    Huang L, Liu Z L, Wang Y J 2020 Refrig. Air-Cond. 34 283Google Scholar

    [19]

    Cahn J W 1961 Acta Metall. Sin 9 795Google Scholar

    [20]

    Van D, Dirkjan B, Le C C 2004 Phys. Fluids 16 3403Google Scholar

  • [1] 慕江勇, 崔继峰, 陈小刚, 赵毅康, 田祎琳, 于欣如, 袁满玉. 微通道中一类生物流体在高Zeta势下的电渗流及传热特性. 物理学报, 2024, 73(6): 064701. doi: 10.7498/aps.73.20231685
    [2] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [3] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] 方明卫, 何建超, 包芸. 湍流热对流温度剖面双参数拟合及其变化特性. 物理学报, 2020, 69(17): 174701. doi: 10.7498/aps.69.20200073
    [5] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] 包芸, 何建超, 高振源. 二维湍流热对流羽流运动路径对传热特性的影响. 物理学报, 2019, 68(16): 164701. doi: 10.7498/aps.68.20190323
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究. 物理学报, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [11] 王刚, 于前锋, 王文, 宋钢, 吴宜灿. 氘氚聚变中子发生器旋转氚靶传热特性研究. 物理学报, 2015, 64(10): 102901. doi: 10.7498/aps.64.102901
    [12] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [13] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [14] 李大鸣, 王志超, 白玲, 王笑. 液滴撞击孔口附近壁面运动过程的模拟研究. 物理学报, 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [15] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究. 物理学报, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [16] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [17] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [18] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [19] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [20] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
计量
  • 文章访问数:  5759
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-10-09
  • 上网日期:  2021-03-22
  • 刊出日期:  2021-04-05

/

返回文章
返回