搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击孔口附近壁面运动过程的模拟研究

李大鸣 王志超 白玲 王笑

引用本文:
Citation:

液滴撞击孔口附近壁面运动过程的模拟研究

李大鸣, 王志超, 白玲, 王笑

Investigations on the process of droplet impact on an orifice plate

Li Da-Ming, Wang Zhi-Chao, Bai Lin, Wang Xiao
PDF
导出引用
  • 采用光滑粒子流体动力学(SPH)方法模拟了液滴撞击带孔壁面的问题, 提出了随计算区域变化的链表搜索法. 结合实验进一步研究了不同物理条件下黏性、重力和内部压应力波动对铺展过程中液滴在 孔口运动情况的影响, 详细分析了有限时间段内孔口断面处的压强变化. 结果表明: 液滴撞击表面后快速向两端铺展, 到达孔口上方时形成射流, 在极短暂时间内重力对射流的影响很小, 但是黏性会引起射流向孔内弯曲. 在内部压应力和惯性作用下射流下部产生有规律的波动, 使得孔口上方流体反复的膨胀和吸收将附近应力较高区域流体吸入孔内发生孔吸现象. 内部压应力是导致液滴被吸入孔内并撞击另一侧孔壁形成飞溅现象的主要原因, 模拟效果和实验结果符合良好.
    To investigate the process of droplet impact on an orifice plate, a two-dimensional SPH model is established. An improved linked-list search algorithm with improvement of computational domain changing with fluid is described. By analyzing the numerical results with the experimental data, influences of viscosity, gravity, and internal pressure on the spreading of droplet over the orifice are studied. It is demonstrated that spreading will change to jet flow after the droplet reaches the orifice, and then the jet will pass it rapidly and in this rather short time the effect of gravity contributes very litte to the motion. However, viscosity can induce the jet to move in a curve into the orifice. Besides, with the internal pressure and inertial effect, the lower part of the jet will fluctuate regularly. The fluctuations make the jet repeat inflation and absorption to absorb the fluid from higher pressure area, resulting in Hole Suction phenomenon. Through analyzing the pressure of the vertical section of orifice edge, we find that internal pressure plays a significant role to the droplet which is absorbed into the orifice and finally leads to splashing. Numerical results are in good agreement with the experimental data.
    • 基金项目: 国家自然科学基金(批准号:51079095);国家自然科学基金创新研究群体科学基金(批准号:51021004)资助的课题.
    • Funds: Project supported by the National Natural Science foundation of China (Grant No. 51079095), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021004).
    [1]

    Hitoshi F, Hiroaki S, Natsuo H 2000 Int. J. Heat Tranfer. 43 1673

    [2]

    Roisman I V, Rioboo R, Tropea C 2002 P. Roy Soc. Lond. A 458 1411

    [3]

    Roisman I V, Opfer L 2008 Colloids and Surfaces A 322 183

    [4]

    Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Tech. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]

    [5]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Tech-Jpn. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [6]

    Quan S L, Li S, Li W Z, Song Y C 2009 Chinese. Jo. 26 627 (in Chinese) [权生林, 李爽, 李维仲, 宋永臣 2009 计算力学学报 26 627]

    [7]

    Li D M, Xu Y N, Li L L, Lu H J, Bai L 2011 Journal of Hydrodynamics 4 447

    [8]

    Li D M, Li X Y, Lin Y 2011 Science China-Technological Sc. 54 1873

    [9]

    Yi L H, Meng J W, Yu C L, Shi Y L 2011 Colloids and Surfaces A: in Physicochem. Eng. Aspects 384 172

    [10]

    Su T X, Ma L Q g, Liu M B 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [11]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熤桥 2012 物理学报 61 184702]

    [12]

    Roisman I V, Weickgenannt C M, Lembach A N, Tropea C 2010 23rd Annual Conference on Liquid Atomization and Spray Systems Brno, Czech Republic: ILASS-Europe. 2010 1

    [13]

    Xu X Y, Jie O Y, Yang B X 2013 Comput. Methods Appl. Meth. Eng. 256 101

    [14]

    Nishio N, Yamana K, Yamaguchi Y 2010 Int. J. Numer. Methods. Heat Fliud Flow. 63 1435

    [15]

    Monaghan J J, Rafiee A 2013 Int. J. Numer. Meth. FL. 71 537

    [16]

    Qiang H F, Liu K, Chen F Z 2012 Acta Phys. Sin. 61 204701 (in Chinese) [强洪夫, 刘开, 陈福振 2012 物理学报 61 204701]

    [17]

    Chen J K, Beraun J E, Carney T C 1999 Int. J. Numer. Meth. Engng. 46 231

    [18]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [19]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 61 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯 2011 物理学报 61 054701]

    [20]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701]

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [23]

    Gesteira M G, Rogers B D, Dalrymple R A, Crespo A J C, Narayanaswamy M 2010 Manchester, UK: University o f Manchester

    [24]

    Simpson J C 1995 Astrophys. J. 488 822

    [25]

    Crespo A J C, Gómez-Gesteira M and Dalrymple R A 2007 Cmc-Comput. Mater. Con. 5 173

    [26]

    Monaghan J J, Kos A 1999 J. Waterw. Port Coast. Ocean Eng. 125 145

    [27]

    Libersky L D, Petscheck A G, Carney T C 1993 J. Comput. Phys. 109 67

    [28]

    Randies P W, Libersky L D 1996 Comput. Methods. Appl. Meth. Eng. 138 375

    [29]

    Liu M B, Liu G R, Lam K Y 2002 Shock Waves 12 181

    [30]

    Dalrymple R A, Knio O Proceedings of Coastal Dynamics, Lund, Sweden: ASCE, 2001 779

  • [1]

    Hitoshi F, Hiroaki S, Natsuo H 2000 Int. J. Heat Tranfer. 43 1673

    [2]

    Roisman I V, Rioboo R, Tropea C 2002 P. Roy Soc. Lond. A 458 1411

    [3]

    Roisman I V, Opfer L 2008 Colloids and Surfaces A 322 183

    [4]

    Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Tech. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]

    [5]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Tech-Jpn. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [6]

    Quan S L, Li S, Li W Z, Song Y C 2009 Chinese. Jo. 26 627 (in Chinese) [权生林, 李爽, 李维仲, 宋永臣 2009 计算力学学报 26 627]

    [7]

    Li D M, Xu Y N, Li L L, Lu H J, Bai L 2011 Journal of Hydrodynamics 4 447

    [8]

    Li D M, Li X Y, Lin Y 2011 Science China-Technological Sc. 54 1873

    [9]

    Yi L H, Meng J W, Yu C L, Shi Y L 2011 Colloids and Surfaces A: in Physicochem. Eng. Aspects 384 172

    [10]

    Su T X, Ma L Q g, Liu M B 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [11]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熤桥 2012 物理学报 61 184702]

    [12]

    Roisman I V, Weickgenannt C M, Lembach A N, Tropea C 2010 23rd Annual Conference on Liquid Atomization and Spray Systems Brno, Czech Republic: ILASS-Europe. 2010 1

    [13]

    Xu X Y, Jie O Y, Yang B X 2013 Comput. Methods Appl. Meth. Eng. 256 101

    [14]

    Nishio N, Yamana K, Yamaguchi Y 2010 Int. J. Numer. Methods. Heat Fliud Flow. 63 1435

    [15]

    Monaghan J J, Rafiee A 2013 Int. J. Numer. Meth. FL. 71 537

    [16]

    Qiang H F, Liu K, Chen F Z 2012 Acta Phys. Sin. 61 204701 (in Chinese) [强洪夫, 刘开, 陈福振 2012 物理学报 61 204701]

    [17]

    Chen J K, Beraun J E, Carney T C 1999 Int. J. Numer. Meth. Engng. 46 231

    [18]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [19]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 61 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯 2011 物理学报 61 054701]

    [20]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701]

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [23]

    Gesteira M G, Rogers B D, Dalrymple R A, Crespo A J C, Narayanaswamy M 2010 Manchester, UK: University o f Manchester

    [24]

    Simpson J C 1995 Astrophys. J. 488 822

    [25]

    Crespo A J C, Gómez-Gesteira M and Dalrymple R A 2007 Cmc-Comput. Mater. Con. 5 173

    [26]

    Monaghan J J, Kos A 1999 J. Waterw. Port Coast. Ocean Eng. 125 145

    [27]

    Libersky L D, Petscheck A G, Carney T C 1993 J. Comput. Phys. 109 67

    [28]

    Randies P W, Libersky L D 1996 Comput. Methods. Appl. Meth. Eng. 138 375

    [29]

    Liu M B, Liu G R, Lam K Y 2002 Shock Waves 12 181

    [30]

    Dalrymple R A, Knio O Proceedings of Coastal Dynamics, Lund, Sweden: ASCE, 2001 779

  • [1] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟. 物理学报, 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [4] 秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人. 液-液驱替动力学研究. 物理学报, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [5] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [9] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [10] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [11] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [12] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [14] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [15] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [16] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章. 物理学报, 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [20] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
计量
  • 文章访问数:  6326
  • PDF下载量:  948
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-02
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-10-05

/

返回文章
返回