搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液-液驱替动力学研究

秦威广 王进 纪文杰 赵文景 陈聪 蓝鼎 王育人

引用本文:
Citation:

液-液驱替动力学研究

秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人

Spreading dynamics of liquid-liquid driving

Qin Wei-Guang, Wang Jin, Ji Wen-Jie, Zhao Wen-Jing, Chen Cong, Lan Ding, Wang Yu-Ren
PDF
HTML
导出引用
  • Marangoni效应是一种液体在界面张力梯度作用下的自发流动行为. 液体界面上液体的Marangoni效应在工程技术领域具有重要作用. 本文使用硅油作为驱动液体, 正十六烷作为被驱动液体, 十二烷基硫酸钠溶液作为液体基底, 通过高速相机捕捉正十六烷受驱动铺展的整个过程, 研究了三相液体系统中液滴的Marangoni效应. 实验发现, 正十六烷在硅油的驱动下从内向外铺展, 形成液体圆环. 本文根据正十六烷圆环内、外边界铺展行为, 分析了正十六烷内边界和外边界的铺展原理, 并研究了滴入硅油体积对于铺展过程的影响. 研究发现, 正十六烷内边界铺展与单一液滴的铺展规律相同, 正十六烷内边界前期铺展由重力主导, 内边界铺展标度律在$ R \sim {t}^{1/4} $$R \sim {t}^{1/2} $范围. 随后铺展由界面张力梯度主导, 内边界铺展标度律为$ R \sim {t}^{3/4} $. 因内边界铺展受重力影响, 内边界的铺展速度与硅油体积成正相关. 而正十六烷外边界在硅油驱动下, 因接触角改变而产生界面张力梯度, 在界面张力梯度作用下外边界铺展标度律为$ R \sim {t}^{3/4} $.
    Surface tension gradient due to concentration difference and temperature difference induces liquid convection, known as Marangoni effect. The Marangoni effect has been extensively studied to understand its fundamental physics and its industrial applications. In this paper we study Marangoni effect of droplet in a three-phase liquid system. In this system, silicone oil is chosen as a driving liquid, and n-hexadecane is used as a driven liquid. A high-speed camera is used to capture the spreading process of n-hexadecane driven by silicon oil on the sodium dodecyl sulfate (SDS) solution. The experiment shows that n-hexadecane driven by silicone oil spreads from inside out, forming a ring structure. According to spreading dynamic behavior of internal boundary and external boundary of n-hexadecane ring, we study the spreading pattern of internal boundary and external boundary of n-hexadecane ring, and the influence of silicone oil volume on the spreading process. Analysis shows that the spreading law of internal silicone oil conforms to single droplet spreading at the liquid interface. In the initial spreading stage, the spreading of four-phase contact line (internal boundary) among silicone oil, air, n-hexadecane and water are dominated by gravity, The scale law of spreading distance R of four-phase contact line and t is in a range of $ R \sim {t}^{1/4} $$ R \sim {t}^{1/2} $. Owing to the gravity influence, the larger the volume of silicone oil, the faster the four-phase contact line spreads. The volume of silicone oil has no effect on the scaling law of the whole spreading process. The next spreading stage, the spreading of the contact line is dominated by the interfacial tension gradient. The scale law of spreading distance R and t conforms to $ R \sim {t}^{3/4} $. Under silicone oil driven, the liquid thickness of n-hexadecane at the four-phase contact line (internal boundary) among air, silicone oil, N-hexadecane and water increases, thus changing the contact angle at three-phase contact line (external boundary) among air, n-hexadecane and water. The change of contact angle leads the interfacial tension gradient to produce. The interfacial tension gradient drives external boundary to spread. Because the spreading of the three-phase contact line is dominated by interfacial tension gradient, the scale law of spreading distance R of three-phase contact line and time t conforms to $ \sim {t}^{3/4} $.
      通信作者: 王进, wangjin@qut.edu.cn ; 蓝鼎, landing@imech.ac.cn
    • 基金项目: 山东省重点研发项目(批准号: 2019GGX102023)和国家自然科学基金(批准号: U1738118, 11472275)资助的课题.
      Corresponding author: Wang Jin, wangjin@qut.edu.cn ; Lan Ding, landing@imech.ac.cn
    • Funds: Project supported by the Key R & D projects of Shandong Province (Grant No. 2019GGX102023) and the National Natural Science Foundation of China (Grant Nos. U1738118, 11472275).
    [1]

    Gennes P D, Brochard-Wyart F, Quéré D 2004 Capillarity and Wetting Phenomena-Drops, Bubbles, Pearls, Waves (New York: Springer-Verlag)

    [2]

    Sanatkaran N, Kulichikhin V G, Malkin A Y, Foudazi R 2018 Langmuir 34 10974Google Scholar

    [3]

    Wodlei F, Sebilleau J, Magnaudet J, Pimienta V 2018 Nat. Commun. 9 820Google Scholar

    [4]

    Motaghian M, Shirsavar R, Erfanifam M, Sabouhi M, Stone H A, van der Linden E, Bonn D, Habibi M 2019 Langmuir 35 14855Google Scholar

    [5]

    Dugas V, Broutin J, Souteyrand E 2005 Langmuir 21 9130Google Scholar

    [6]

    Brutin D, Sobac B, Loquet B, Sampol J 2011 J. Fluid Mech. 667 85Google Scholar

    [7]

    Kim Y K, Na H K, Ham S, Min D H 2014 RSC Adv. 4 50091Google Scholar

    [8]

    Sellier M, Nock V, Gaubert C, Verdier C 2013 Eur. Phys. J. Spec. Top. 219 131Google Scholar

    [9]

    Jones A R, Kim C B, Zhou S X, Ha H, Katsumata R, Blachut G, Bonnecaze R T, Ellison C J 2017 Macromolecules 50 4588Google Scholar

    [10]

    Harkins W D 1941 J. Chem. Phys. 9 552Google Scholar

    [11]

    Fay J A 1969 Oil on the Sea (Boston: Springer) pp53–63

    [12]

    Huh C, Inoue M, Mason S G 1975 Can. J. Chem. Eng. 53 367Google Scholar

    [13]

    Foda M, Cox R G 1980 J. Fluid Mech. 101 33

    [14]

    Borgas M S, Grotberg J B 1988 J. Fluid Mech. 193 151

    [15]

    Kita Y, Askounis A, Kohno M, Takata Y, Kim J, Sefiane K 2016 Appl. Phys. Lett. 109 171602Google Scholar

    [16]

    Malyuk A Y, Ivanova N A 2018 Appl. Phys. Lett. 112 103701Google Scholar

    [17]

    Izri Z, Linden M, Michelin S, Dauchot O 2014 Phys. Rev. Lett. 113 248302Google Scholar

    [18]

    Vernay C, Ramos L, Ligoure C 2015 Phys. Rev. Lett. 115 198302Google Scholar

    [19]

    Venerus D C, Simavilla D N 2015 Sci. Rep. 5 16162Google Scholar

    [20]

    Tan H, Diddens C, Lv P, Kuerten J, Zhang X, Lohse D 2019 Nat. Commun. 10 478Google Scholar

    [21]

    Keiser L, Bense H, Colinet P, Bico J, Reyssat E 2017 Phys. Rev. Lett 118 074504Google Scholar

    [22]

    Kim H, Muller K, Shardt O, Afkhami S, Stone H A 2017 Nat. Phys. 13 1105Google Scholar

    [23]

    Hasegawa K, Manzaki Y 2021 Phys. Fluids 33 034124

    [24]

    Hernández-Sánchez J F, Eddi A, Snoeijer J H 2015 Phys. Fluids 27 032003Google Scholar

    [25]

    赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人 2021 物理学报 70 184701Google Scholar

    Zhao W J, Wang J, Qin W G, Ji W J, Lan D, Wang Y R 2021 Acta Phys. Sin. 70 184701Google Scholar

    [26]

    Joos P, Pintens J 1977 J. Colloid Interface Sci. 60 507Google Scholar

  • 图 1  实验观察装置示意图

    Fig. 1.  Schematic of the experimental setup.

    图 2  2 μL硅油驱动正十六烷实验图像, 其中黄线为正十六烷/SDS基底接触线, 红线为硅油/正十六烷接触线(比例尺为10 mm)

    Fig. 2.  Schematic of spreading process of n-hexadecane driven by 2 μL silicon oil, where the yellow line is the contact line between n-hexadecane and SDS solution, the red line is the contact line between n-hexadecane and silicon oil (scale bar: 10 mm).

    图 3  实验原理图, 其中液体1, 2, 3分别为硅油、正十六烷、SDS溶液; L123 为四相接触线, L23三相接触线, ${\nabla \sigma }_{123}{\rm{和}} $$ {\nabla \sigma }_{23}{\rm{分}}{\rm{别}}{\rm{为}}$接触线处L123L23处的界面张力梯度; σi 为第i相液体表面张力, σij为第i, j相之间的界面张力

    Fig. 3.  Experimental schematic diagram, where liquids 1, 2 and 3 are silicone oil, n-hexadecane and SDS solution respectively, L123 is four phase contact line and L23 is three phase contact line. ${\nabla \sigma }_{123},\; {\nabla \sigma }_{23}$ are Interfacial tension gradient in L123, L23 respectively. σi is the tension of i liquid, σij is the tension of the i, j interface.

    图 4  正十六烷内边界直径R随时间的变化 (a)线性坐标轴; (b)双对数坐标轴(红线斜率为3/4)

    Fig. 4.  Diagram of the diameter of n-hexadecane inner boundary over time: (a) Linear axis; (b) dual logarithmic axis (the slope of the red line is 3/4).

    图 5  正十六烷外边界直径R随时间变化图 (a)线性坐标轴; (b)双对数坐标轴, 其中红线斜率为3/4, T0为初始时刻, T1是斜率向3/4靠近的拐点

    Fig. 5.  Diagram of the diameter of n-hexadecane outer boundary over time: (a) Linear axis; (b) dual logarithmic axis, where the slope of the red line is 3/4, T0 is the initial moment, T1 is the inflection point where the slope approaches 3/4.

  • [1]

    Gennes P D, Brochard-Wyart F, Quéré D 2004 Capillarity and Wetting Phenomena-Drops, Bubbles, Pearls, Waves (New York: Springer-Verlag)

    [2]

    Sanatkaran N, Kulichikhin V G, Malkin A Y, Foudazi R 2018 Langmuir 34 10974Google Scholar

    [3]

    Wodlei F, Sebilleau J, Magnaudet J, Pimienta V 2018 Nat. Commun. 9 820Google Scholar

    [4]

    Motaghian M, Shirsavar R, Erfanifam M, Sabouhi M, Stone H A, van der Linden E, Bonn D, Habibi M 2019 Langmuir 35 14855Google Scholar

    [5]

    Dugas V, Broutin J, Souteyrand E 2005 Langmuir 21 9130Google Scholar

    [6]

    Brutin D, Sobac B, Loquet B, Sampol J 2011 J. Fluid Mech. 667 85Google Scholar

    [7]

    Kim Y K, Na H K, Ham S, Min D H 2014 RSC Adv. 4 50091Google Scholar

    [8]

    Sellier M, Nock V, Gaubert C, Verdier C 2013 Eur. Phys. J. Spec. Top. 219 131Google Scholar

    [9]

    Jones A R, Kim C B, Zhou S X, Ha H, Katsumata R, Blachut G, Bonnecaze R T, Ellison C J 2017 Macromolecules 50 4588Google Scholar

    [10]

    Harkins W D 1941 J. Chem. Phys. 9 552Google Scholar

    [11]

    Fay J A 1969 Oil on the Sea (Boston: Springer) pp53–63

    [12]

    Huh C, Inoue M, Mason S G 1975 Can. J. Chem. Eng. 53 367Google Scholar

    [13]

    Foda M, Cox R G 1980 J. Fluid Mech. 101 33

    [14]

    Borgas M S, Grotberg J B 1988 J. Fluid Mech. 193 151

    [15]

    Kita Y, Askounis A, Kohno M, Takata Y, Kim J, Sefiane K 2016 Appl. Phys. Lett. 109 171602Google Scholar

    [16]

    Malyuk A Y, Ivanova N A 2018 Appl. Phys. Lett. 112 103701Google Scholar

    [17]

    Izri Z, Linden M, Michelin S, Dauchot O 2014 Phys. Rev. Lett. 113 248302Google Scholar

    [18]

    Vernay C, Ramos L, Ligoure C 2015 Phys. Rev. Lett. 115 198302Google Scholar

    [19]

    Venerus D C, Simavilla D N 2015 Sci. Rep. 5 16162Google Scholar

    [20]

    Tan H, Diddens C, Lv P, Kuerten J, Zhang X, Lohse D 2019 Nat. Commun. 10 478Google Scholar

    [21]

    Keiser L, Bense H, Colinet P, Bico J, Reyssat E 2017 Phys. Rev. Lett 118 074504Google Scholar

    [22]

    Kim H, Muller K, Shardt O, Afkhami S, Stone H A 2017 Nat. Phys. 13 1105Google Scholar

    [23]

    Hasegawa K, Manzaki Y 2021 Phys. Fluids 33 034124

    [24]

    Hernández-Sánchez J F, Eddi A, Snoeijer J H 2015 Phys. Fluids 27 032003Google Scholar

    [25]

    赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人 2021 物理学报 70 184701Google Scholar

    Zhao W J, Wang J, Qin W G, Ji W J, Lan D, Wang Y R 2021 Acta Phys. Sin. 70 184701Google Scholar

    [26]

    Joos P, Pintens J 1977 J. Colloid Interface Sci. 60 507Google Scholar

  • [1] 董攀, 田昌, 李杰, 王韬, 于海涛, 苏明旭, 何佳龙, 石金水. 基于Mie散射在线测量真空弧放电液滴方法探索. 物理学报, 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [2] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [7] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [12] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [13] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [14] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [15] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [16] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [17] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [18] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章. 物理学报, 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
计量
  • 文章访问数:  3083
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-11-04
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回