搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体液滴内的光驱流动实验及其解析解

刘哲 王雷磊 时朋朋 崔海航

引用本文:
Citation:

纳米流体液滴内的光驱流动实验及其解析解

刘哲, 王雷磊, 时朋朋, 崔海航

Experiments and analytical solutions of light driven flow in nanofluid droplets

Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang
PDF
HTML
导出引用
  • 在光透过性的流体介质中添加具有高光响应特性的纳米颗粒, 可以形成光驱动纳米流体, 实现对光能的高效利用. 本文针对光驱纳米流体流动行为开展实验观察和理论分析研究, 这是实现光驱纳米流动精确调控的理论基础. 首先利用粒子图像测速技术对液滴中直径为300 nm的Fe3O4颗粒在不同光源照射下受Marangoni效应诱导的运动进行了实验观测, 研究光能向动能的高效转化机制. 实验结果表明, 当颗粒浓度大于临界数密度时, 可诱导出垂向具有对称结构的涡, 在液滴底部颗粒由四周向中心运动, 顶部则由中心向四周运动, 光源频率和颗粒数密度是这一过程的主导因素. 随后, 针对光强高斯分布的紫外光驱动下大颗粒数密度、特征流速约mm/s的光驱纳米流体, 通过Stokes方程和表面张力梯度边界条件实现了其流场分布的解析求解, 理论获得的流场分布解析解与实验测量结果保持一致, 证实定量理论分析的有效性. 最后, 讨论了引入表面张力与在液滴底部引入表面压力及体相中集中引入光辐射力的不同驱动模式之间的相关性. 这一研究成果为光微流控系统中流动行为的精确调控及光能的高效转化等提供了理论支持.
    Adding nanoparticles with high light response characteristics to a light-transmitting fluid medium can form a light-driven nanofluid and achieve efficient use of light energy. This paper conducts the experimental observation and theoretical analysis of the light driven nanofluid flow behavior, which is the theoretical basis for achieving the precise control of optical drive nanofluid. To realize the efficient conversion of light energy into kinetic energy, here, the motion of Fe3O4 particles with a diameter of 300 nm in droplets induced by the Marangoni effect is studied under different light sources by using the particle image velocimetry (PIV). The experimental results show that when the number density of particles is higher than the critical value, the vertical vortices with symmetrical structure can be induced. At the bottom of the droplet, the particles move from the periphery to the center of droplet, and at the top of the droplet, the particles move from the center to the periphery of droplet. In addition, the frequency of light source and the number density of particles are the dominant factors in this process. Subsequently, for the light driven nanofluid experiment in this paper, the analytical solution of the flow field distribution is achieved by using the Stokes equation and the surface tension gradient boundary condition. The analytical solution of the flow field distribution obtained here is consistent with the experimental results, confirming the validity of the quantitative theory. Finally, the correlation between various driving modes, including surface tension at the top surface, surface pressure at the bottom surface or concentrated light radiation force in bulk phase, is discussed. This research provides theoretical support for the precise regulation of flow behavior and efficient conversion of light energy in the optical microfluidic system.
      通信作者: 时朋朋, shipengpeng@xjtu.edu.cn ; 崔海航, cuihaihang@xauat.edu.cn
    • 基金项目: 省部级-陕西省自然科学基础研究计划(2018JM1029)
      Corresponding author: Shi Peng-Peng, shipengpeng@xjtu.edu.cn ; Cui Hai-Hang, cuihaihang@xauat.edu.cn
    [1]

    Rivière D, Selva B, Chraibi H, Delabre U, Delville J P 2016 Phys. Rev. E 93 023112Google Scholar

    [2]

    赵晟, 尹剑波, 赵晓鹏 2010 物理学报 59 3302Google Scholar

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302Google Scholar

    [3]

    Vela E, Hafez M, Régnier S 2009 Int. J. Optomechatronics 3 289Google Scholar

    [4]

    Lee C Y, Chang C L, Wang Y N, Fu L M 2011 Int. J. Mol. Sci. 12 3263Google Scholar

    [5]

    Liu G L, Kim J, Lu Y, Lee L P 2006 Nat. Mater. 5 27Google Scholar

    [6]

    Kajorndejnukul V, Sukhov S, Dogariu A 2015 Sci. Rep. 5 14861Google Scholar

    [7]

    Xuan M, Wu Z, Shao J, Dai L, Si T, He Q 2016 J. Am. Chem. Soc. 138 6492Google Scholar

    [8]

    Dervaux J, Resta M C, Brunet P 2017 Nat. Phys. 13 306Google Scholar

    [9]

    Ibele M, Mallouk T E, Sen A 2009 Angew. Chem. Int. Ed. Engl. 48 3308Google Scholar

    [10]

    Mou F Z, Kong L, Chen C R, Chen Z H, Xu L L, Guan J G 2016 Nanoscale 8 4976Google Scholar

    [11]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95Google Scholar

    [12]

    李银妹, 姚焜 2015 光镊技术 (北京: 科学出版社) 第23, 24页

    Li Y M, Yao K 2015 Optical Tweezers Technology (Beijing: Science press) pp23, 24 (in Chinese)

    [13]

    Thielicke W, Stamhuis E J 2014 J. Open Res. Software 2 e30Google Scholar

    [14]

    彭晓峰, 林雪萍, 王补宣 1998 工程热物理学报 19 715

    Peng X F, Lin X P, Wang B X 1998 J. Eng. Thermophys. 19 715

    [15]

    严宗毅 2002 低雷诺数流理论 (北京: 北京大学出版社) 第73−77页

    Yan Z Y 2002 Low Reynolds Number Flow Theory (Beijing: Peking University Press) pp73−77 (in Chinese)

    [16]

    Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D, Bishop D, Sattayasamitsathit S, Zhang L, Wang J 2010 Small 6 2741Google Scholar

    [17]

    Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene C, Shipton E, Fullerton E E, Zhang L F, Lauga E, Joseph W 2012 Small 8 460Google Scholar

    [18]

    Manesh K M, Balasubramanian S, Wang J 2010 Chem. Commun. 46 5704Google Scholar

    [19]

    Manesh K M, Campuzano S, Gao W, Lobocastañón M J, Shitanda I, Kiantaj K, Wang J 2013 Nanoscale 5 1310Google Scholar

    [20]

    Chraibi H, Wunenburger R, Lasseux D, Petit J, Delville J P 2011 J. Fluid Mech. 688 195Google Scholar

    [21]

    Morgan H, Green N 2002 AC Electrokinetics: Colloids and Nanoparticles (England: Research Study Press) pp144−147

  • 图 1  Fe3O4纳米颗粒的扫描电子显微镜形貌图(a)及UV-Vis吸收光谱(b)

    Fig. 1.  Scanning electron microscopy image (a) and UV-Vis absorption spectrum (b) of Fe3O4 nanoparticle.

    图 2  (a)液滴内光驱流动实验装置示意图; (b)液滴薄层内的流动示意图; (c)水平截面为高斯分布的光强分布示意图

    Fig. 2.  (a) Schematic diagram of experimental system for light driven flow in droplet; (b) flow in a thin layer of droplet; (c) light intensity with Gaussian distribution in horizontal section.

    图 3  不同光源驱动下Fe3O4颗粒的空间分布 (a) 明场; (b) UV照射3 s; (c) UV照射6 s; (d) Blue照射3 s; (e) Blue照射6 s; (f) Green照射3 s; (g) Green照射6 s

    Fig. 3.  The spatial distribution of Fe3O4 particles driven by different light sources: (a) Bright field; (b) UV irradiation, 3 s; (c) UV irradiation, 6 s; (d) blue irradiation, 3 s; (e) blue irradiation, 6 s; (f) green irradiation, 3 s; (g) green irradiation, 6 s.

    图 4  不同光源驱动下Fe3O4颗粒的速度分布 (a) UV照射3 s; (b) Blue照射3 s; (c) Green照射3 s

    Fig. 4.  The velocity field of Fe3O4 particles driven by different light sources: (a) UV irradiation, 3 s; (b) blue irradiation, 3 s; (c) green irradiation, 3 s.

    图 5  不同光源及浓度溶液下Fe3O4颗粒的最大运动速度

    Fig. 5.  Maximum velocity of Fe3O4 particles under different light source and concentration.

    图 6  UV光下液滴上表面的温度分布图(a)和温度随半径变化图(b)

    Fig. 6.  Temperature field (a) and the change of temperature with radius (b) on the surface of droplets under UV light.

    图 7  (a) Fe3O4颗粒的理论速度和实验速度的对比; (b)理论模型对应的速度分布及流线图

    Fig. 7.  (a) A comparison between theoretical and experimental velocities of Fe3O4 particles; (b) velocity distribution and streamline corresponding to theoretical model.

    图 8  可诱导涡流的三种等效作用力 (a)表面张力作用; (b)集中体力作用; (c)表面压力作用

    Fig. 8.  Three equivalent forces that induce vortex: (a) Surface tension; (b) concentrating physical strength; (c) surface pressure.

  • [1]

    Rivière D, Selva B, Chraibi H, Delabre U, Delville J P 2016 Phys. Rev. E 93 023112Google Scholar

    [2]

    赵晟, 尹剑波, 赵晓鹏 2010 物理学报 59 3302Google Scholar

    Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302Google Scholar

    [3]

    Vela E, Hafez M, Régnier S 2009 Int. J. Optomechatronics 3 289Google Scholar

    [4]

    Lee C Y, Chang C L, Wang Y N, Fu L M 2011 Int. J. Mol. Sci. 12 3263Google Scholar

    [5]

    Liu G L, Kim J, Lu Y, Lee L P 2006 Nat. Mater. 5 27Google Scholar

    [6]

    Kajorndejnukul V, Sukhov S, Dogariu A 2015 Sci. Rep. 5 14861Google Scholar

    [7]

    Xuan M, Wu Z, Shao J, Dai L, Si T, He Q 2016 J. Am. Chem. Soc. 138 6492Google Scholar

    [8]

    Dervaux J, Resta M C, Brunet P 2017 Nat. Phys. 13 306Google Scholar

    [9]

    Ibele M, Mallouk T E, Sen A 2009 Angew. Chem. Int. Ed. Engl. 48 3308Google Scholar

    [10]

    Mou F Z, Kong L, Chen C R, Chen Z H, Xu L L, Guan J G 2016 Nanoscale 8 4976Google Scholar

    [11]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95Google Scholar

    [12]

    李银妹, 姚焜 2015 光镊技术 (北京: 科学出版社) 第23, 24页

    Li Y M, Yao K 2015 Optical Tweezers Technology (Beijing: Science press) pp23, 24 (in Chinese)

    [13]

    Thielicke W, Stamhuis E J 2014 J. Open Res. Software 2 e30Google Scholar

    [14]

    彭晓峰, 林雪萍, 王补宣 1998 工程热物理学报 19 715

    Peng X F, Lin X P, Wang B X 1998 J. Eng. Thermophys. 19 715

    [15]

    严宗毅 2002 低雷诺数流理论 (北京: 北京大学出版社) 第73−77页

    Yan Z Y 2002 Low Reynolds Number Flow Theory (Beijing: Peking University Press) pp73−77 (in Chinese)

    [16]

    Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D, Bishop D, Sattayasamitsathit S, Zhang L, Wang J 2010 Small 6 2741Google Scholar

    [17]

    Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene C, Shipton E, Fullerton E E, Zhang L F, Lauga E, Joseph W 2012 Small 8 460Google Scholar

    [18]

    Manesh K M, Balasubramanian S, Wang J 2010 Chem. Commun. 46 5704Google Scholar

    [19]

    Manesh K M, Campuzano S, Gao W, Lobocastañón M J, Shitanda I, Kiantaj K, Wang J 2013 Nanoscale 5 1310Google Scholar

    [20]

    Chraibi H, Wunenburger R, Lasseux D, Petit J, Delville J P 2011 J. Fluid Mech. 688 195Google Scholar

    [21]

    Morgan H, Green N 2002 AC Electrokinetics: Colloids and Nanoparticles (England: Research Study Press) pp144−147

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人. 基于Marangoni效应的液-液驱动铺展过程. 物理学报, 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [5] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [6] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [7] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [8] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [9] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [10] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [11] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [12] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [13] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [14] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [15] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [16] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [17] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析. 物理学报, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [18] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [19] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探. 物理学报, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  8245
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-06
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-03-20

/

返回文章
返回