搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面活性剂对气-液界面纳米颗粒吸附规律的影响

张旋 张天赐 葛际江 蒋平 张贵才

引用本文:
Citation:

表面活性剂对气-液界面纳米颗粒吸附规律的影响

张旋, 张天赐, 葛际江, 蒋平, 张贵才

Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface

Zhang Xuan, Zhang Tian-Ci, Ge Ji-Jiang, Jiang Ping, Zhang Gui-Cai
PDF
HTML
导出引用
  • 通过测定及分析纳米颗粒和表面活性剂-纳米颗粒复配体系在自由吸附过程与动态收缩过程中表面张力的变化, 总结了纳米颗粒在气-液界面的吸附排布规律以及表面活性剂对其吸附规律的影响. 实验结果表明, 自由吸附过程中, 随矿化度增加、阳离子活性剂浓度增加, 平衡表面张力降低, 这与颗粒吸附密度增加及颗粒润湿性改变有关. 浓度低于临界胶束浓度(CMC)时, 阳离子活性剂体系与混合体系的表面张力差异证明了阳离子活性剂可以通过静电作用吸附于纳米颗粒表面, 进而部分溶解于水相; 而阴离子活性剂与纳米颗粒相互作用力较弱, 对表面张力影响较小. 纳米颗粒体系在液滴收缩过程中, 表面张力从自由吸附平衡态进一步降低大约9 mN/m, 说明自由吸附过程中纳米颗粒不能达到紧密排布; 同时表面张力呈现为缓慢降低、快速降低和达到平衡三部分, 表面压缩模量可达70 mN/m, 满足了液膜Gibbs稳定准则, 这将有助于提高泡沫或者乳液稳定性. 纳米颗粒-表面活性剂体系在液滴收缩过程中表面张力降低值随活性剂浓度增加而减小; 表面压缩模量由高到低依次为: 纳米颗粒 > 阳离子活性剂-纳米颗粒 > 阴离子-纳米颗粒 > 表面活性剂.
    Silica nanoparticles (NPs) are more and more useful in many engineering areas, but the dynamic behaviors of adsorption of NPs at surface are not clear, especially when there exist surfactants on the surface. The modified NPs with the nonionic dimethyl silane are partially hydrophobic, and in this paper, the surface behavior is investigated which is determined by interfacial tension and surface compression modulus. It is concluded that the dimethyl silane coverage, the brine salinity and the surfactant would affect the NPs’ adsorption. Higher salinity in brine or higher dimethyl silane coverage causes lower steady state surface tension, which is related to the hydrophobicity and adsorption amount of NPs at the surface. When the cationic surfactant concentration is lower than critical micelle concentration (CMC), the surface tension of mixture system is a little bit higher than cationic surfactant’s. Cationic surfactant can be adsorbed at NPs’ surface to change the hydrophobicity based on the electrostatic attraction, and then some surfactants are dissolved in liquid phase together with NPs, while the anionic surfactant will not do so. In the shrinking droplet process, the surface tension of the NPs with 1.5 μmol/m2 dimethyl silane decreases from ~59 mN/m at the steady state to ~50 mN/m, which proves that the NPs’ adsorption density can be higher even after infinite long time equilibrium due to the repulsive force between the NPs. Besides, the curve of interfacial tension (IFT) versus surface area shows three parts with different declining slopes. In the first part, the relatively low adsorption of NPs at the surface means weak interaction between NPs. Then in the second part, due to the irreversible adsorption, the spacing between NPs decreases with adsorption amount increasing and surface area lowering, so the increasing of NPs’ interaction leads to high surface compression modulus. After that, the IFT curve keeps flat since the NPs assembly reaches to the closest peck. With the increase of NPs’ hydrophobicity, the compression modulus increases up to ~70 mN/m, which satisfies the Gibbs criterion to resist coarsening of the foam or emulsion. However, for the mixing system, increasing surfactant concentration leads to a lower surface tension at steady state, then the surface tension difference or compression modulus decreases too. Finally, we find that the compression modulus order from high to low is as follows: NPs, cationic surfactant-NPs, anionic surfactant-NPs, surfactants. This investigation is meaningful for accounting for the enhancement of foam or emulsion stability with NPs affected by salinity and surfactant.
      通信作者: 张贵才, zhanggc@upc.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51574266)和中央高校基本科研业务费(批准号: 17CX06012)资助的课题
      Corresponding author: Zhang Gui-Cai, zhanggc@upc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51574266) and the Fundamental Research Funds for the Central Universities (Grant No. 17 CX06012)
    [1]

    Sozer N, Kokini J L 2009 Trends Biotechnol. 27 82Google Scholar

    [2]

    侯静菲, 杨延莲, 王琛 2017 物理化学学报 33 63Google Scholar

    Hou J F, Yang Y L, Wang C 2017 Acta Phys.-Chim. Sin. 33 63Google Scholar

    [3]

    Soleimani M, Khani A, Najafzadeh K 2012 J. Mol. Catal. B: Enzym. 74 1Google Scholar

    [4]

    Arjang S, Manteghian M, Mohammadi A 2013 Chem. Eng. Res. Des. 91 1050Google Scholar

    [5]

    Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W 2015 Soft Matter 12 946

    [6]

    Kim I, Worthen A J, Johnston K P, DiCarlo D A, Huh C 2016 J. Nanopart. Res. 18 82Google Scholar

    [7]

    叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 214703

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 214703

    [8]

    Binks B P 2002 Curr. Opin. Colloid. Interface Sci. 7 21Google Scholar

    [9]

    Bizmark N, Ioannidis M A, Henneke D E 2014 Langmuir 30 710Google Scholar

    [10]

    Roger K, Cabane B 2012 Angew. Chem. Int. Ed. 51 5625Google Scholar

    [11]

    Kutuzov S, He J, Tangirala R, Emrick T, Russell T, Böker A 2007 Phys. Chem. Chem. Phys. 9 6351Google Scholar

    [12]

    Zang D, Zhang Y, Hou Q 2012 Colloids Surf., A 395 262Google Scholar

    [13]

    Zhang Y, Wang S, Zhou J, Zhao R, Benz G, Tcheimou S, Meredith J C, Behrens S H 2017 Langmuir 33 4511Google Scholar

    [14]

    Du K, Glogowski E, Emrick T, Russell T P, Dinsmore A D 2010 Langmuir 26 12518Google Scholar

    [15]

    Hua X, Frechette J, Bevan M A 2018 Soft matter 14 3818Google Scholar

    [16]

    Chai Y, Lukito A, Jiang Y, Ashby P D, Russell T P 2017 Nano Lett. 17 6453Google Scholar

    [17]

    Maestro A, Rio E, Drenckhan W, Langevin D, Salonen A 2014 Soft Matter 10 6975Google Scholar

    [18]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125Google Scholar

    [19]

    Safouane M, Langevin D, Binks B 2007 Langmuir 23 11546Google Scholar

    [20]

    Monteux C, Fuller G G, Bergeron V 2004 J. Phys. Chem. B 108 16473Google Scholar

    [21]

    Santini E, Krägel J, Ravera F, Liggieri L, Miller R 2011 Colloids Surf. A 382 186Google Scholar

    [22]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interface Sci. 228 55Google Scholar

    [23]

    Worthen A J, Tran V, Cornell K A, Truskett T M, Johnston K P 2016 Soft Matter 12 2025Google Scholar

    [24]

    Cui Z G, Yang L L, Cui Y Z, Binks B 2009 Langmuir 26 4717

    [25]

    Zhang H, Yu K, Cayre O J, Harbottle D 2016 Langmuir 32 13472Google Scholar

    [26]

    臧渡洋, 张永建, Langevin Dominique 2011 物理学报 60 076801

    Zang D Y, Zhang Y J, Langevin D 2011 Acta Phys. Sin. 60 076801

    [27]

    Zang D, Rio E, Delon G, Langevin D, Wei B, Binks B 2011 Mol. Phys. 109 1057Google Scholar

  • 图 1  1.5 μmol/m2 DM 纳米颗粒(1.0 wt.%)在不同浓度盐水中的动态表面张力

    Fig. 1.  Salinity effects on the dynamic and steady state IFT when the DM coverage is 1.5 μmol/m2 with the NPs concentration is 1.0 wt.%.

    图 2  不同改性纳米颗粒(1.0 wt.%) 在2 M NaCl + 0.25 M CaCl2盐水中的动态表面张力

    Fig. 2.  Effects of the DM coverage on the dynamic and steady state IFT with 1.0 wt.% concentration in the brine of 2 M NaCl + 0.25 M CaCl2.

    图 3  阴、阳离子活性剂与改性纳米颗粒复配体系表面张力 (a) 1.5 μmol/m2 DM纳米颗粒溶液中加入不同浓度TTAB; (b) 1.5 μmol/m2 DM纳米颗粒中加入不同浓度AOS

    Fig. 3.  The IFT of mixing solution of different surfactant with 1.0 wt.% NPs: (a) 1.5 μmol/m2 DM NPs solutions with different concentrations of TTAB; (b) 1.5 μmol/m2 DM NPs solutions with different concentrations of AOS

    图 4  液滴平衡前后收缩过程表面张力变化曲线(2 M NaCl + 0.25 M CaCl2, 溶液质量密度为1.0 wt.%)

    Fig. 4.  IFT in the shrinking process versus the surface area change (in the 2 M NaCl + 0.25 M CaCl2 brine with 1.0 wt.% concentration).

    图 5  不同体系液滴收缩过程中表面张力的变化, 溶液质量密度为1 wt.% (a), (b) 不同疏水性纳米颗粒溶液, 盐含量2 M NaCl+0.25 M CaCl2; (c), (d) 不同盐浓度溶液, 1.5 μmol/m2 DM纳米颗粒

    Fig. 5.  IFT at different Aw/A ratios during droplet shrinking for (a) and (b) NPs with difference DM coverage at the fixed concentration of 1 wt.% in 2 M NaCl+0.25 M CaCl2 brine; for (c) and (d) 1 wt.% 1.5 μmol/m2 DM NPs solutions with various salinities

    图 6  质量浓度为1.0 wt.%的不同纳米颗粒-活性剂体系液滴收缩过程中表面张力的变化 (a) 1.5 μmol/m2 DM纳米颗粒中加入不同浓度TTAB; (b) 1.5 μmol/m2 DM纳米颗粒中加入TTAB或AOS, 表面张力初始值相近

    Fig. 6.  IFT at different Aw/A ratios during droplet shrinking in DI water with 1.0 wt.% NPs: (a) 1.5 μmol/m2 DM NPs solutions with different TTAB concentrations; (b) 1.5 μmol/m2 DM NPs solutions with TTAB and AOS with same beginning IFT

    表 1  液滴持续收缩过程中不同改性纳米颗粒溶液体系的平均表面压缩模量

    Table 1.  The compression modulus of various hydrophobic NPs solutions in 2 M NaCl + 0.25 M CaCl2 brine with continuous shrinking droplet.

    0.8 μmol/m2 DM1.2 μmol/m2 DM1.5 μmol/m2 DM
    前段中段前段中段前段中段
    表面压缩模量/mN·m–1~26~58~39~70~36~67
    下载: 导出CSV

    表 2  液滴持续收缩过程中改性纳米颗粒溶液在不同盐含量条件下的表面压缩模量

    Table 2.  The compression modulus of 1.5 μmol/m2 DM NPs solutions in various salinity brine with continuous shrinking droplet

    超纯水2.5 M NaCl2 M NaCl + 0.25 M CaCl2
    前段中段前段中段前段中段
    表面压缩模量/mN·m–1~0~0~22~68~36~67
    下载: 导出CSV
  • [1]

    Sozer N, Kokini J L 2009 Trends Biotechnol. 27 82Google Scholar

    [2]

    侯静菲, 杨延莲, 王琛 2017 物理化学学报 33 63Google Scholar

    Hou J F, Yang Y L, Wang C 2017 Acta Phys.-Chim. Sin. 33 63Google Scholar

    [3]

    Soleimani M, Khani A, Najafzadeh K 2012 J. Mol. Catal. B: Enzym. 74 1Google Scholar

    [4]

    Arjang S, Manteghian M, Mohammadi A 2013 Chem. Eng. Res. Des. 91 1050Google Scholar

    [5]

    Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W 2015 Soft Matter 12 946

    [6]

    Kim I, Worthen A J, Johnston K P, DiCarlo D A, Huh C 2016 J. Nanopart. Res. 18 82Google Scholar

    [7]

    叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 214703

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 214703

    [8]

    Binks B P 2002 Curr. Opin. Colloid. Interface Sci. 7 21Google Scholar

    [9]

    Bizmark N, Ioannidis M A, Henneke D E 2014 Langmuir 30 710Google Scholar

    [10]

    Roger K, Cabane B 2012 Angew. Chem. Int. Ed. 51 5625Google Scholar

    [11]

    Kutuzov S, He J, Tangirala R, Emrick T, Russell T, Böker A 2007 Phys. Chem. Chem. Phys. 9 6351Google Scholar

    [12]

    Zang D, Zhang Y, Hou Q 2012 Colloids Surf., A 395 262Google Scholar

    [13]

    Zhang Y, Wang S, Zhou J, Zhao R, Benz G, Tcheimou S, Meredith J C, Behrens S H 2017 Langmuir 33 4511Google Scholar

    [14]

    Du K, Glogowski E, Emrick T, Russell T P, Dinsmore A D 2010 Langmuir 26 12518Google Scholar

    [15]

    Hua X, Frechette J, Bevan M A 2018 Soft matter 14 3818Google Scholar

    [16]

    Chai Y, Lukito A, Jiang Y, Ashby P D, Russell T P 2017 Nano Lett. 17 6453Google Scholar

    [17]

    Maestro A, Rio E, Drenckhan W, Langevin D, Salonen A 2014 Soft Matter 10 6975Google Scholar

    [18]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125Google Scholar

    [19]

    Safouane M, Langevin D, Binks B 2007 Langmuir 23 11546Google Scholar

    [20]

    Monteux C, Fuller G G, Bergeron V 2004 J. Phys. Chem. B 108 16473Google Scholar

    [21]

    Santini E, Krägel J, Ravera F, Liggieri L, Miller R 2011 Colloids Surf. A 382 186Google Scholar

    [22]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interface Sci. 228 55Google Scholar

    [23]

    Worthen A J, Tran V, Cornell K A, Truskett T M, Johnston K P 2016 Soft Matter 12 2025Google Scholar

    [24]

    Cui Z G, Yang L L, Cui Y Z, Binks B 2009 Langmuir 26 4717

    [25]

    Zhang H, Yu K, Cayre O J, Harbottle D 2016 Langmuir 32 13472Google Scholar

    [26]

    臧渡洋, 张永建, Langevin Dominique 2011 物理学报 60 076801

    Zang D Y, Zhang Y J, Langevin D 2011 Acta Phys. Sin. 60 076801

    [27]

    Zang D, Rio E, Delon G, Langevin D, Wei B, Binks B 2011 Mol. Phys. 109 1057Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [5] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [6] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [7] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [13] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [14] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [15] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [16] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [17] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [20] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
计量
  • 文章访问数:  11660
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-11-12
  • 刊出日期:  2020-01-20

/

返回文章
返回