-
提出了一种降低光学反馈腔增强吸收光谱(optical feedback-cavity enhanced absorption spectroscopy, OF-CEAS)系统中干涉噪声影响的干涉抑制方法. 使用Ariy函数分析了透射腔模信号中存在的干涉噪声, 研究发现该系统中的干涉信号源自于光束在前腔镜内的多次反射, 并通过更换3种厚度不同的平面反射镜进行验证. 提出利用Ariy函数拟合得到的干涉信号作为无吸收情况下的背景信号, 与测量气体的吸收信号相减直接获得无背景吸收光谱信号. 该方法有效避免了OF-CEAS系统中, 由于环境因素导致腔体稳定性改变等原因造成的测量误差. 最后, 基于该方法测量了1.53 μm附近的乙炔气体吸收特性, 评估系统的探测灵敏度为7.143 × 10–8 (1σ), 实验表明该方法在提高OF-CEAS系统的探测灵敏度方面有着很大的应用前景.
-
关键词:
- 光学反馈腔增强吸收光谱 /
- 干涉效应 /
- Ariy函数
In this paper, an efficient method of suppressing interference is presented in an optical feedback-cavity enhanced absorption spectroscopy (OF-CEAS) system. The Ariy function is used to analyze the interference signal in the transmission cavity mode signal. It is found that the interference signal in system originates from multiple reflections of the beam in the mirror, which is verified by replacing three kinds of cavity front mirrors with different thickness values. The result obtained by the Ariy function is used as a background signal, and the absorption spectrum signal can be obtained by making its difference from the absorption signal of the measured gas. This method effectively avoids the frequency error caused by the inability to measure the background signal and the absorption signal at the same time in the OF-CEAS system. Finally, the absorption characteristics of acetylene gas at 1.53 μm are measured. Based on the signal-to-noise ratio, the detection sensitivity of the system is evaluated to be 7.143 × 10–8 (1σ). Experiments show that this method is effective in improving the detection sensitivity of OF-CEAS system.-
Keywords:
- optical feedback cavity enhanced absorption spectroscopy /
- interference effect /
- Ariy function
[1] Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427Google Scholar
[2] Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281Google Scholar
[3] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar
[4] 阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 物理学报 54 1927Google Scholar
Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927Google Scholar
[5] Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859Google Scholar
[6] Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37Google Scholar
[7] Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552Google Scholar
[8] Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897Google Scholar
[9] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375Google Scholar
[10] Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442Google Scholar
[11] Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027Google Scholar
[12] Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163
[13] Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243Google Scholar
[14] Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206Google Scholar
[15] Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475Google Scholar
[16] Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329Google Scholar
[17] 许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933Google Scholar
Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933Google Scholar
[18] Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831
[19] Werle P 2011 Appl. Phys. B 102 313Google Scholar
[20] Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718
[21] Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263
[22] Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104
[23] Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330
[24] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938Google Scholar
[25] Morville J, Romanini D 2002 Appl. Phys. B 74 495Google Scholar
[26] Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491Google Scholar
[27] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3Google Scholar
[28] Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1Google Scholar
[29] Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338Google Scholar
-
-
[1] Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427Google Scholar
[2] Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281Google Scholar
[3] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar
[4] 阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 物理学报 54 1927Google Scholar
Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927Google Scholar
[5] Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859Google Scholar
[6] Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37Google Scholar
[7] Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552Google Scholar
[8] Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897Google Scholar
[9] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375Google Scholar
[10] Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442Google Scholar
[11] Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027Google Scholar
[12] Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163
[13] Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243Google Scholar
[14] Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206Google Scholar
[15] Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475Google Scholar
[16] Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329Google Scholar
[17] 许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933Google Scholar
Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933Google Scholar
[18] Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831
[19] Werle P 2011 Appl. Phys. B 102 313Google Scholar
[20] Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718
[21] Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263
[22] Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104
[23] Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330
[24] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938Google Scholar
[25] Morville J, Romanini D 2002 Appl. Phys. B 74 495Google Scholar
[26] Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491Google Scholar
[27] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3Google Scholar
[28] Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1Google Scholar
[29] Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338Google Scholar
计量
- 文章访问数: 4452
- PDF下载量: 91
- 被引次数: 0