搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米液滴撞击高温平板壁的分子动力学模拟

冯山青 龚路远 权生林 郭亚丽 沈胜强

引用本文:
Citation:

纳米液滴撞击高温平板壁的分子动力学模拟

冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强

Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall

Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang
PDF
HTML
导出引用
  • 采用分子动力学的方法对纳米液滴撞击高温平板壁面产生的Leidenfrost现象进行了探究, 分析了液滴撞击不同温度壁面对Leidenfrost现象的影响. 结果表明, 随着壁面温度的提升, 液滴蒸发的速度更快, 脱离壁面的时刻越早, 脱离壁面时的速度也越大, 最终悬浮时液滴体积也越大. 通过分析脱离壁面前一时刻液滴内部的密度、温度分布发现, 由于高温壁面具有更高的热通量致使蒸发过程更快进而产生更厚的蒸气层, 该蒸气层将阻碍换热, 使得液滴在壁面温度更高时液滴内部的平均温度越低, 且平均密度越小.
    The process of droplet impacting on a high-temperature wall is widely existent in daily life and industrial applications. Most of scholars mainly have focused on experimental and macroscopic research on this phenomenon. In this work, molecular dynamics simulation is conducted to investigate the evolution of droplet and the influence of surface temperature on its evolution, in order to explore the heat transfer mechanism of nanodroplet impacting on high-temperature surface. Droplet containing 10741 argon atoms impacts on the copper plates at temperatures of 85, 150, 200, 250 and 300 K, respectively. The number of droplet evaporation atoms is statistically obtained, the droplet barycenter displacement is analyzed, and the density distribution and temperature distribution inside the droplet are acquired. It is shown that the droplet exhibits different characteristics on the wall at different temperatures. The droplet finally stabilizes on the wall at 85 K as shown in Fig. (a), but when the temperature of the wall rises to 150 K, the droplet evaporates slowly and finally completely as shown in Fig. (b), and for the wall temperatures 200, 250 and 300 K, the Leidenfrost phenomenon is found: the droplet is suspended above the wall as displayed in Figs. (c)–(e). Fig. (f) shows the number of evaporated atoms at different wall temperatures. It also can be seen that the Leidenfrost phenomenon occurs at wall temperatures 200, 250 and 300 K, because for the three conditions there are rise steps and then the numbers of evaporated atoms almost keep constant. For the temperature conditions under which the Leidenfrost phenomenon can occur, the higher the wall temperature, the faster the droplet evaporates, the earlier the detachment occurs from the wall, the greater the droplet detaching velocity, and the larger the final suspending droplet volume. The analyses of the density distribution and temperature distribution of the droplet at the moment when it detaches from the wall show that the evaporation process is faster and a thicker vapor layer is generated due to the higher heat flux of the high-temperature wall, which will hinder the heat exchange, so that the average temperature of the droplet is lower and the average density is smaller.
      通信作者: 郭亚丽, ylguo@dlut.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51936002)资助的课题.
      Corresponding author: Guo Ya-Li, ylguo@dlut.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51936002).
    [1]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [2]

    Visaria M, Mudawar I 2009 IEEE Trans. Compon. Packaging Technol. 32 784Google Scholar

    [3]

    Shen S Q, Liang G T, Guo Y L, Liu R, Mu X S 2013 Desalin. Water Treat. 51 830Google Scholar

    [4]

    Moreira A L N, Moita A S, Panao M R 2010 Prog. Energy Combust. Sci. 36 54Google Scholar

    [5]

    刘晓华, 赵一鸣, 陈石, 沈胜强, 王斯琦 2017 热科学与技术 16 280Google Scholar

    Lui X H, Zhao Y M, Chen S, Shen S Q, Wang S Q 2017 J. Therm. Sci. Technol. 16 280Google Scholar

    [6]

    刘晓华, 陈晗, 王开珉, 陈石, 沈胜强 2018 热科学与技术 17 464Google Scholar

    Liu X H, Chen H, Wang K M, Chen S, Shen S Q 2018 J. Therm. Sci. Technol. 17 464Google Scholar

    [7]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [8]

    郭亚丽, 陈桂影, 沈胜强, 张京涛, 王明旭, 曹雪松, 郑周虎 2015 工程热物理学报 36 1547

    Guo Y L, Chen G Y, Shen S Q, Zhang J T, Wang M X, Cao X S, Zheng Z H 2015 J. Eng. Thermophys. 36 1547

    [9]

    Biance A L, Clanet C, Quéré D 2003 Phys. Fluids 15 1632Google Scholar

    [10]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [11]

    蔡畅, 刘红, 奚溪, Issam Mudawar 2021 工程热物理学报 42 732

    Cai C, Liu H, Xi X, Mudawar I 2021 J. Eng. Thermophys. 42 732

    [12]

    王均毅, 施红, 徐文冰, 胡亮春, 刘欢, 朱信龙 2020 航空计算技术 50 72

    Wang J Y, Shi H, Xu W B, Hu L C, Liu H, Zhu X L 2020 Aeronaut. Comput. Tech. 50 72

    [13]

    张瑜, 宁智, 吕明, 孙春华 2017 燃烧科学与技术 23 451

    Zhang Y, Ning Z, Lü M, Sun C H 2017 J. Combust. Sci. Technol. 23 451

    [14]

    Rony M D, Islam M A, Thakur M S H, Islam M, Hasan M N 2023 Int. J. Heat Mass Transfer 209 124107Google Scholar

    [15]

    Huang X N, Zhou L P, Du X Z 2023 J. Mol. Liq. 382 121982Google Scholar

    [16]

    Biryukov D A, Gerasimov D N, Yurin E I 2020 J. Phys. Conf. Ser. 1683 022007Google Scholar

    [17]

    Tuoliken A, Zhou L P, Bai P, Du X Z 2021 Int. J. Heat Mass Transfer. 172 121218Google Scholar

    [18]

    Feng R T, Zhao W J, Wu X D, Xue Q J 2012 J. Colloid Interface Sci. 367 450Google Scholar

    [19]

    Hashmi A, Xu Y H, Coder B, Osborne P A, Spafford J, Michael G E, Yu G, Xu J 2012 Sci. Rep. 2 797Google Scholar

    [20]

    Wells G G, Ledesmaaguilar R, Mchale G, Sefiane K 2015 Nat. Commun. 6 6390Google Scholar

    [21]

    Yarnell J L, Katz M J, Wenzel R G, Koenig S H 1973 Phys. Rev. A 7 2130Google Scholar

    [22]

    MullerPlathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [23]

    Haile J M 1997 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley-Interscience) p489

    [24]

    王甜 2015 硕士学位论文 (大连: 大连理工大学)

    Wang T 2015 M. S. Thesis (Dalian: Dalian University of Technology

  • 图 1  液滴撞击高温壁面的物理模型

    Fig. 1.  Physical model of a droplet hitting a high-temperature wall.

    图 2  径向分布函数比较图

    Fig. 2.  Comparison of radial distribution functions.

    图 3  接触角获得过程 (a) 液滴铺展原子快照; (b) 液滴密度云图; (c) 等值线拟合

    Fig. 3.  Contact angle acquisition process: (a) Droplet spreading atomic snapshot; (b) droplet density contours; (c) contour fitting.

    图 4  调节因子对润湿角的影响 (a) 本文模拟; (b) 对比模拟[24]

    Fig. 4.  Effect of moderator on wetting angle: (a) Simulated in this paper; (b) comparative simulation[24].

    图 5  不同壁面温度下不同时刻的原子快照 (a) 85 K; (b) 150 K; (c) 200 K; (d) 250 K; (e) 300 K

    Fig. 5.  Atomic snapshots with different wall temperatures at different moments: (a) 85 K; (b) 150 K; (c) 200 K; (d) 250 K; (e) 300 K.

    图 6  液滴蒸发原子数目

    Fig. 6.  Number of atoms evaporated by the droplet.

    图 7  液滴的质心变化

    Fig. 7.  Change in the center of mass of a droplet.

    图 8  液滴与不同温度壁面之间的热通量

    Fig. 8.  Heat flux between the droplet and the wall at different temperatures.

    图 9  液滴脱离壁面前不同壁面温度下液滴的密度分布

    Fig. 9.  Density distribution of droplets at different wall temperatures before droplets detach from the wall.

    图 10  液滴脱离壁面前不同壁面温度下的液滴温度分布

    Fig. 10.  Droplet temperature distribution at different wall temperatures before the droplet detached from the wall.

    表 1  Lennard-Jones (12-6)各原子模拟参数

    Table 1.  Lennard-Jones (12-6) atomic simulation parameters.

    ε/eVσrc
    Cu0.520312.2972612
    Ar0.01043.40512
    Cu—Ar0.073562.8511312
    下载: 导出CSV

    表 2  物性参数对比

    Table 2.  Comparison of physical property parameters.

    本文模拟 实验测量 误差
    导热系数/(W⋅m–1·K–1) 0.128 0.132 3.03%
    黏度/(10–4 Pa–1·s–1) 2.92 2.8 –4.28%
    下载: 导出CSV

    表 3  不同壁面温度下蒸气层厚度、液滴厚度以及液滴平均密度的统计

    Table 3.  Statistics of vapor layer thickness, droplet thickness and average droplet density at different wall temperatures.

    壁面
    温度/K
    蒸气层
    厚度/Å
    液滴
    厚度/Å
    液滴密度/
    (g⋅cm–3)
    150 0 10 0.95
    200 14 50 1.15
    250 19 35 1.21
    300 23 24 1.29
    下载: 导出CSV

    表 4  不同壁面温度下液滴平均温度、上下温差以及温度梯度

    Table 4.  Average droplet temperature, the temperature difference between upper and lower temperatures, and the temperature gradient at different wall temperatures.

    壁面温度/K平均温度/K液滴上下
    温差/K
    温度梯度/
    (K·Å–1)
    15014050.5
    200121330.65
    250107411.17
    30098471.95
    下载: 导出CSV
  • [1]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [2]

    Visaria M, Mudawar I 2009 IEEE Trans. Compon. Packaging Technol. 32 784Google Scholar

    [3]

    Shen S Q, Liang G T, Guo Y L, Liu R, Mu X S 2013 Desalin. Water Treat. 51 830Google Scholar

    [4]

    Moreira A L N, Moita A S, Panao M R 2010 Prog. Energy Combust. Sci. 36 54Google Scholar

    [5]

    刘晓华, 赵一鸣, 陈石, 沈胜强, 王斯琦 2017 热科学与技术 16 280Google Scholar

    Lui X H, Zhao Y M, Chen S, Shen S Q, Wang S Q 2017 J. Therm. Sci. Technol. 16 280Google Scholar

    [6]

    刘晓华, 陈晗, 王开珉, 陈石, 沈胜强 2018 热科学与技术 17 464Google Scholar

    Liu X H, Chen H, Wang K M, Chen S, Shen S Q 2018 J. Therm. Sci. Technol. 17 464Google Scholar

    [7]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [8]

    郭亚丽, 陈桂影, 沈胜强, 张京涛, 王明旭, 曹雪松, 郑周虎 2015 工程热物理学报 36 1547

    Guo Y L, Chen G Y, Shen S Q, Zhang J T, Wang M X, Cao X S, Zheng Z H 2015 J. Eng. Thermophys. 36 1547

    [9]

    Biance A L, Clanet C, Quéré D 2003 Phys. Fluids 15 1632Google Scholar

    [10]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [11]

    蔡畅, 刘红, 奚溪, Issam Mudawar 2021 工程热物理学报 42 732

    Cai C, Liu H, Xi X, Mudawar I 2021 J. Eng. Thermophys. 42 732

    [12]

    王均毅, 施红, 徐文冰, 胡亮春, 刘欢, 朱信龙 2020 航空计算技术 50 72

    Wang J Y, Shi H, Xu W B, Hu L C, Liu H, Zhu X L 2020 Aeronaut. Comput. Tech. 50 72

    [13]

    张瑜, 宁智, 吕明, 孙春华 2017 燃烧科学与技术 23 451

    Zhang Y, Ning Z, Lü M, Sun C H 2017 J. Combust. Sci. Technol. 23 451

    [14]

    Rony M D, Islam M A, Thakur M S H, Islam M, Hasan M N 2023 Int. J. Heat Mass Transfer 209 124107Google Scholar

    [15]

    Huang X N, Zhou L P, Du X Z 2023 J. Mol. Liq. 382 121982Google Scholar

    [16]

    Biryukov D A, Gerasimov D N, Yurin E I 2020 J. Phys. Conf. Ser. 1683 022007Google Scholar

    [17]

    Tuoliken A, Zhou L P, Bai P, Du X Z 2021 Int. J. Heat Mass Transfer. 172 121218Google Scholar

    [18]

    Feng R T, Zhao W J, Wu X D, Xue Q J 2012 J. Colloid Interface Sci. 367 450Google Scholar

    [19]

    Hashmi A, Xu Y H, Coder B, Osborne P A, Spafford J, Michael G E, Yu G, Xu J 2012 Sci. Rep. 2 797Google Scholar

    [20]

    Wells G G, Ledesmaaguilar R, Mchale G, Sefiane K 2015 Nat. Commun. 6 6390Google Scholar

    [21]

    Yarnell J L, Katz M J, Wenzel R G, Koenig S H 1973 Phys. Rev. A 7 2130Google Scholar

    [22]

    MullerPlathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [23]

    Haile J M 1997 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley-Interscience) p489

    [24]

    王甜 2015 硕士学位论文 (大连: 大连理工大学)

    Wang T 2015 M. S. Thesis (Dalian: Dalian University of Technology

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [4] 秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人. 液-液驱替动力学研究. 物理学报, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [5] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [6] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [7] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [13] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [15] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [16] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [17] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [20] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟. 物理学报, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
计量
  • 文章访问数:  1860
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-06
  • 修回日期:  2024-03-19
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回