搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性分流微通道的结构设计及散热性能

王晗 袁礼 王超 王如志

引用本文:
Citation:

周期性分流微通道的结构设计及散热性能

王晗, 袁礼, 王超, 王如志

Structure and thermal properties of periodic split-flow microchannels

Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi
PDF
HTML
导出引用
  • 微通道散热器在集成电路中具有重要应用, 但目前传统的长直微通道散热过程导致温度不均匀, 散热效率较低. 本文设计了一种周期性分流微结构并与传统微通道进行集成, 实现了一种高效率的周期性分流微通道散热器. 基于以上周期性分流微通道, 系统研究了单根微通道内微结构数目、微结构的排布方式及结构参数对其散热性能的影响. 结果表明, 引入的分流微结构可增大换热面积、打破原有层流边界层、促进冷/热冷却液混合、显著改善微通道散热性能. 在100 W/cm2的热流密度下, 入口端冷却液流速为1.18 m/s时, 单根微通道内引入9组微结构后, 其最高温度下降约24 K, 热阻下降约44%, 努塞尔数增大约124%, 整体传热性能(PEC)达1.465. 进一步地, 微结构采用交错渐变的周期排布方式, 沿流动方向逐渐变宽的扰流元使得冷却液被充分利用, 减少了高/低温区的存在且缓解了散热面沿流动方向存在的温度梯度, 压降损失相较于均匀排布也有一定程度的降低, 有效提升了散热效率. 本文提出的周期性分流微通道将在大功率集成电路及电子冷却领域中具有广阔的应用前景.
    Microchannel heat sinks have important applications in integrated circuits, but the current traditional long straight microchannel heat dissipation process causes uneven temperature and low heat dissipation efficiency. In this paper, a periodic split-flow microstructure is designed and integrated with traditional microchannels to form a periodic split-flow microchannel heat sink. Numerical simulation is used to study the influence of the number, the arrangement and structural parameters of microstructures in a single microchannel on its thermal performance. The simulation results show that the split-flow microstructure can increase the heat exchange area, break the original laminar boundary layer, promote the mixing of cold/hot coolant, and significantly improve the heat dissipation performance of the microchannel. Through comparative experiments, 9 groups are finally determined as the optimal number of microstructures in a single microchannel. At a heat flux of 100 W/cm2, when the coolant flow rate at the inlet is 1.18 m/s, after 9 groups of microstructures are added into a single microchannel, the maximum temperature drops by about 24 K and the thermal resistance decreases by about 44%. The Nusselt number is increased by about 124%, and the performance evaluation criterion (PEC) reaches 1.465. On this basis, the microstructure adopts a staggered gradual periodic arrangement to avoid the long-distance non-microstructure section between the two groups of microstructures. The turbulence element that gradually widens along the flow direction makes the coolant fully utilized. This results in a reduction in the high/low temperature zone and alleviates the temperature gradient that exists along the flow direction of the heat dissipation surface, and the pressure drop loss is also reduced to a certain extent compared with the pressure drop in the uniform arrangement, and the comprehensive thermal performance is further improved. It shows broad application prospects in the field of high-power integrated circuits and electronic cooling.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774017, 51761135129)和北京市属高校高水平创新团队建设计划项目(批准号: IDHT20170502)资助的课题
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129) and the Beijing Municipal High Level Innovative Team Building Program, China (Grant No. IDHT20170502)
    [1]

    刘益才 2006 电子器件 29 296Google Scholar

    Liu Y C 2006 Chin. J. Electron. 29 296Google Scholar

    [2]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [3]

    Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821Google Scholar

    [4]

    Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263Google Scholar

    [7]

    Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744Google Scholar

    [8]

    刘一兵 2007 电子工艺技术 28 286Google Scholar

    Liu Y B 2007 Electron. Process Technol. 28 286Google Scholar

    [9]

    Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126Google Scholar

    [10]

    裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85

    [11]

    裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339

    [12]

    Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377Google Scholar

    [13]

    Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796Google Scholar

    [14]

    Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359Google Scholar

    [15]

    Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374Google Scholar

    [16]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701Google Scholar

    [17]

    Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708Google Scholar

    [18]

    董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618Google Scholar

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618Google Scholar

    [19]

    Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587Google Scholar

    [20]

    Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259Google Scholar

    [21]

    Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609Google Scholar

    [22]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247

    [23]

    Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208Google Scholar

    [24]

    Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428Google Scholar

    [25]

    Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78Google Scholar

    [26]

    Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049Google Scholar

    [27]

    Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487Google Scholar

    [28]

    Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948Google Scholar

    [29]

    Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348Google Scholar

    [30]

    Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060Google Scholar

    [31]

    Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49Google Scholar

    [32]

    Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930Google Scholar

    [33]

    Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060Google Scholar

    [34]

    Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706Google Scholar

  • 图 1  长直微通道散热器结构示意图 (a)长直微通道散热器; (b)单根微通道截面

    Fig. 1.  Schematic diagram of the long straight microchannel heat sink: (a) Long straight microchannel heat sink; (b) cross section of a single microchannel

    图 2  分流微通道结构示意图 (a)分流微通道散热器; (b)分流微结构局部俯视图

    Fig. 2.  Schematic diagram of the split-flow microchannel structure: (a) Split-flow microchannel heat sink; (b) Partial top view of the split-flow microstructure

    图 3  含有不同数量及排布方式微结构的单/双根微通道示意图: SM1 (0组); SM2 (3组); SM3 (9组); SM4 (15组); DM1 (交错排布); DM2 (渐密排布); DM3 (渐变排布); DM4(交错渐变排布)

    Fig. 3.  Schematic diagram of single/double microchannels with different numbers and arrangements of microstructures: SM1 (0 group); SM2 (3 groups); SM3 (9 groups); SM4 (15 groups); DM1 (staggered arrangement); DM2 (gradually arranged); DM3 (gradient arrangement); DM4 (staggered gradient arrangement)

    图 4  (a) SM1—SM4微通道内主流线方向流体的压力变化; (b) SM3及DM1—DM4在不同入口端流速下的压降损失

    Fig. 4.  (a)Pressure change of the fluid in the direction of the main flow line in the SM1–SM4 microchannel; (b) the pressure drop loss of SM3 and DM1–DM4 at different inlet flow rates.

    图 5  SM2中微结构附近局部流体的压力变化切面云图

    Fig. 5.  Cross-sectional cloud diagram of pressure change of local fluid near the microstructure in SM2

    图 6  整体热阻与泵送功率的关系 (a) SM1—SM4; (b) SM3, DM1—DM4

    Fig. 6.  Relationship between overall thermal resistance and pumping power: (a) SM1–SM4; (b) SM3, DM1–DM4

    图 7  流体在SM2微通道内不同位置的流速分布

    Fig. 7.  Flow velocity distribution of fluid at different positions in the SM2 microchannel

    图 8  不同位置流速切面图

    Fig. 8.  Cross-sectional view of flow velocity at different locations

    图 9  微通道底面最高温度与入口端流速的关系 (a) SM1—SM4; (b) SM3及DM1—DM4

    Fig. 9.  Relationship between the maximum temperature on the bottom of the microchannel and the flow rate at the inlet: (a) SM1–SM4; (b) SM3 and DM1–DM4

    图 10  不同情况下底面上沿主流动方向上温度变化 (a) SM1—SM4; (b) SM3及DM1—DM4

    Fig. 10.  Temperature changes along the main flow direction on the bottom surface under different conditions: (a) SM1–SM4; (b) SM3 and DM1–DM4.

    图 11  不同情况下换热面温度分布云图

    Fig. 11.  Cloud diagram of temperature distribution of heat exchange surface under different conditions.

    图 12  微通道散热器整体热阻与入口雷诺数的关系

    Fig. 12.  The relationship between the overall thermal resistance of the microchannel radiator and the entrance Reynolds number.

    图 13  (a)不同情况下努塞尔数与入口端雷诺数的关系; (b)不同情况PEC与入口雷诺数的关系

    Fig. 13.  (a) The relationship between Nusselt number and inlet Reynolds number under different conditions; (b) the relationship between performance evaluation criterion and inlet Reynolds number under different conditions.

    表 1  不同温度下水的物理参数

    Table 1.  Physical parameters of water at different temperatures

    温度
    T/K
    密度 ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数 κ/
    (W·m–1·K–1)
    动态黏度 μ/
    (10–4 Pa·s)
    293.15998.24186.90.5942310.093
    303.15995.624179.70.610557.96
    313.15992.24176.50.625166.51
    323.15988.054176.80.63815.47
    333.15983.224180.20.649424.70
    343.15977.784186.30.659164.10
    353.15971.784194.80.667383.59
    363.15965.34205.40.674133.17
    373.15958.394218.20.679442.82
    383.15958.3942330.683372.53
    下载: 导出CSV

    表 2  硅的物理参数

    Table 2.  Physical parameters of silicon.

    材料
    物性
    密度ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数k/
    (W·m–1·K–1)
    2329700130
    下载: 导出CSV

    表 3  网格独立性研究

    Table 3.  Grid independence research

    网格1893083网格21128905网格31414841网格41702482网格51916125网格63475672
    压降损失($ \Delta P $)4195.04287.04341.24379.94409.64406.1
    最高温度(Tm)353.05352.65352.32351.94351.88351.87
    误差4.8%; 0.33%2.7%; 0.22%1.47%; 0.13%0.59%; 0.020%0.079%; 0.0028%基准
    下载: 导出CSV
  • [1]

    刘益才 2006 电子器件 29 296Google Scholar

    Liu Y C 2006 Chin. J. Electron. 29 296Google Scholar

    [2]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [3]

    Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821Google Scholar

    [4]

    Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263Google Scholar

    [7]

    Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744Google Scholar

    [8]

    刘一兵 2007 电子工艺技术 28 286Google Scholar

    Liu Y B 2007 Electron. Process Technol. 28 286Google Scholar

    [9]

    Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126Google Scholar

    [10]

    裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85

    [11]

    裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339

    [12]

    Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377Google Scholar

    [13]

    Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796Google Scholar

    [14]

    Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359Google Scholar

    [15]

    Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374Google Scholar

    [16]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701Google Scholar

    [17]

    Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708Google Scholar

    [18]

    董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618Google Scholar

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618Google Scholar

    [19]

    Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587Google Scholar

    [20]

    Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259Google Scholar

    [21]

    Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609Google Scholar

    [22]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247

    [23]

    Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208Google Scholar

    [24]

    Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428Google Scholar

    [25]

    Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78Google Scholar

    [26]

    Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049Google Scholar

    [27]

    Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487Google Scholar

    [28]

    Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948Google Scholar

    [29]

    Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348Google Scholar

    [30]

    Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060Google Scholar

    [31]

    Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49Google Scholar

    [32]

    Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930Google Scholar

    [33]

    Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060Google Scholar

    [34]

    Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706Google Scholar

  • [1] 于欣如, 崔继峰, 陈小刚, 慕江勇, 乔煜然. 平行板微通道中一类不可压缩微极性流体在高Zeta势下的时间周期电渗流. 物理学报, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [2] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [3] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [4] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [5] 贺瑞霞, 刘伯飞, 梁俊辉, 高海波, 王宁, 张奇星, 张德坤, 魏长春, 许盛之, 王广才, 赵颖, 张晓丹. 类桑拿法制备的周期性结构Mo金属催化电极及其在电解水制氢中的应用. 物理学报, 2016, 65(4): 048801. doi: 10.7498/aps.65.048801
    [6] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [7] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [8] 于淼, 高劲松, 张建, 徐念喜. 二维光栅与周期性缝隙阵列组合薄膜结构的杂散光抑制. 物理学报, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [9] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法. 物理学报, 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [10] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [11] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [12] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] 张耘. 周期性极化铌酸锂的微区拉曼及荧光研究. 物理学报, 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [14] 钟兰花, 吴福根. 水波在周期性钻孔底部结构中的传播及其能带. 物理学报, 2009, 58(9): 6363-6368. doi: 10.7498/aps.58.6363
    [15] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [16] 魏向军, 徐 清, 王天民, 贾全杰, 王焕华, 冯松林. 周期性多层膜合金化制取的TiNi形状记忆薄膜的室温微结构特征. 物理学报, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [17] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [18] 高红, 王选章, 吕树臣. 周期性调制稀释Ising体系的相变. 物理学报, 1996, 45(12): 2054-2060. doi: 10.7498/aps.45.2054
    [19] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据. 物理学报, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [20] 何国柱. 永久磁铁周期性聚焦电子束. 物理学报, 1959, 15(10): 535-549. doi: 10.7498/aps.15.535
计量
  • 文章访问数:  9354
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2020-11-24
  • 上网日期:  2021-05-09
  • 刊出日期:  2021-05-20

/

返回文章
返回