搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合光机械腔中的量子相变

张文慧 赵秀琴

引用本文:
Citation:

耦合光机械腔中的量子相变

张文慧, 赵秀琴

Quantum phase transitions in coupled optomechanical cavities

ZHANG Wenhui, ZHAO Xiuqin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文在包含两模光场、N个原子以及机械振子的耦合光机械腔中, 从理论上探讨了光与原子以及光与机械振子的相互作用引起的量子相变. 采用Holstein-Primakoff变换法, 假设了新的平移玻色算符和4个参量, 给出了系统的基态能量泛函和4个参量之间的关系, 通过两个特例证明了假设的平移玻色算符的正确性. 在共振情况下有正常相到超辐射相的相变, 调控两腔光场的耦合强度可以改变相变点. 当考虑辐射压力产生的非线性光子-声子相互作用时, 系统的相图由原来的2个相区扩展为3个相区, 包括正常相和超辐射相的共存区, 双稳的超辐射相区, 以及不稳定的真空宏观相区. 同时, 还出现了一条转折点曲线, 该曲线与相变点曲线有重叠区域, 表明系统中存在多重量子相变. 这些相变现象可以通过测量平均光子数来检测. 当不考虑两模光场的耦合作用时回到旋波近似的Dicke模型的量子相变.
    In this paper, the quantum phase transitions caused by the interactions between light and atoms, as well as between light and mechanical oscillators, are discussed theoretically in a coupled optomechanical cavity containing two optical field modes (N atoms and mechanical oscillator). By using Holstein-Primak off transformation method, new translational boson operators and four parameters are assumed. The ground state energy functional of the system and a set of equations composed of four parameters are given. The correctness of the assumed translation boson operators is proved by two special cases. In the case of resonance, the characteristics of the obtained solutions are shown by solving the equations, graphical method and Hessian matrix judgment. The stable zero solution is called the normal phase, the unstable zero solution is named the unstable vacuum macroscopic phase, and the stable non-zero solution is referred to as the superradiation phase. The phase can transition from normal phase to superradiation phase, and the point of phase transition can be changed by adjusting the coupling intensity of the two cavity light fields. When the nonlinear photon-phonon interaction caused by radiation pressure is considered, the phase diagram of the system is expanded from the original two phase regions to three phase regions, including the coexistent normal phase and superradiation phase, the bistable superradiation phase, and the unstable vacuum macroscopic phase region, where the bistable superradiation phase is similar to the optical bistable phenomenon. At the same time, there is also a turning point curve, which overlaps with the phase transition point curve, indicating the existence of multiple quantum phase transitions in the system. These predictions can be detected by measuring the average number of photons. The coupled optomechanical cavity that we studied, when considering the coupling of the two-mode optical field and the atomic ensemble but no mechanical oscillator, reflects the interaction between the two-mode optical field and the atom, thus concluding that the transformation point is small and the quantum phase transition is easy to occur. When the coupling between the mechanical oscillator and the two-mode optical field is not considered, the interaction between the single-mode optical field and the atom is reflected, returning to the quantum phase transition of the Dicke model under rotating wave approximation.
  • 图 1  耦合光机械腔的示意图[2022], A腔和C腔通过两模光场耦合强度J耦合, A腔中有二能级原子系综, 由具有强度$ {\varOmega _{\text{p}}} $和频率$ {\omega _{\text{p}}} $的外部单模激光场相干驱动, C腔是光机械腔

    Fig. 1.  Schematic illustration of the coupled optomechanical cavities [2022], cavity A and cavity C are coupled by a two-mode optical field coupling strength J. An ensemble of two-level atoms is placed into the cavity A which is coherently driven by an external monochromatic laser field with strength $ {\varOmega _{\text{p}}} $ and frequency $ {\omega _{\text{p}}} $, cavity C is a optomechanical cavity.

    图 2  $ g/{\omega _{\text{b}}}{\text{ - }}J/{\omega _{\text{b}}} $的相图

    Fig. 2.  Phase diagram of $ g/{\omega _{\text{b}}}{\text{ - }}J/{\omega _{\text{b}}} $.

    图 3  选择A, B两个点, 参量为$ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 10, 15 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $ (a1), (a2)对应的一阶偏导数p; (b1), (b2)对应的平均基态能量$ \varepsilon $

    Fig. 3.  Select points A and B, parameters $ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 10, 15 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $: (a1), (a2) The corresponding first partial derivatives p; (b1), (b2) the corresponding average ground state energies $ \varepsilon $.

    图 4  选择D点, 参量为$ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 30 $, $ \zeta /{\omega _{\text{b}}} = 0 $, $ 1.0 $, $ 2.0 $ (a1)—(a3) 对应的一阶偏导数p; (b1)—(b3) 对应的平均基态能量$ \varepsilon $

    Fig. 4.  Select D point, parameters $ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 30 $, $ \zeta /{\omega _{\text{b}}} = 0 $, $ 1.0 $, $ 2.0 $: (a1)–(a3) Corresponding first partial derivatives p; (b1)–(b3) the corresponding average ground state energies $ \varepsilon $.

    图 5  取参量$ {\text{ }}g/{\omega _{\text{b}}} = 25 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $, $ {\text{ }}J/{\omega _{\text{b}}} = 0 \to 20{\text{ }} $, A腔和C腔的平均光子数分布$ {n_{{\text{pA}}}} $ (a1)和$ {n_{{\text{pC}}}} $(a3), A腔中原子布居差的分布$ \varDelta {n_{\text{a}}} $(a2)随两模光场的耦合参量J变化曲线, $ {\text{ }}{J_{\text{t}}}/{\omega _{\text{b}}} $是转折点

    Fig. 5.  Take parameters $ {\text{ }}g/{\omega _{\text{b}}} = 25 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $, $ {\text{ }}J/{\omega _{\text{b}}} = 0 \to 20{\text{ }} $: The changing curves of average photon number distribution $ {n_{{\text{pA}}}} $ (a1) and $ {n_{{\text{pC}}}} $ (a3) in cavity A and cavity C, and the distribution of atomic population difference $ \varDelta {n_{\text{a}}} $ (a2) in cavity A, with the coupling parameter J of the two-mode optical field, $ {\text{ }}{J_{\text{t}}}/{\omega _{\text{b}}} $ is a turning point.

    图 6  $ g/{\omega _{\text{b}}}\sim J/{\omega _{\text{b}}} $平面相图 (a1) $ \zeta /{\omega _{\text{b}}} = 0.0 $; (a2) $ \zeta /{\omega _{\text{b}}} = 1.0 $; (a3) $ \zeta /{\omega _{\text{b}}} = 2.0 $

    Fig. 6.  Phase diagram in a plane $ g/{\omega _{\text{b}}}\sim J/{\omega _{\text{b}}} $: (a1) $ \zeta /{\omega _{\text{b}}} = 0.0 $; (a2) $ \zeta /{\omega _{\text{b}}} = 1.0 $; (a3) $ \zeta /{\omega _{\text{b}}} = 2.0 $.

    表 1  旋波近似时Dicke模型基态物理量的分布情况

    Table 1.  Distribution of physical quantities in the ground state of Dicke model in rotating-wave approximation.

    基态物理量$g \leqslant g_{\text{c}}^{\text{R}}$$g > g_{\text{c}}^{\text{R}}$
    平均光子数分布${n_{{\text{pA}}}} = \alpha $0$ \dfrac{1}{4}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left( {1 - \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $
    布局数差分布$\varDelta {n_{\text{a}}} = \beta - \dfrac{1}{2}$$ - \dfrac{1}{2}$$ - \dfrac{{g_{\text{c}}^{{\text{R2}}}}}{{2{g^2}}} $
    平均基态能量$\varepsilon = {H_0}$$ - \dfrac{1}{2}$$ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}}}}\left( {1 + \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $
    下载: 导出CSV

    表 2  考虑与C腔中光场有相互作用时基态物理量的分布情况

    Table 2.  Distribution of physical quantities in the ground state interacting with the light field in the cavity C is considered.

    基态物理量 $g \leqslant g_{\text{c}}^J$ $g > g_{\text{c}}^J$
    平均光子数分布$\left\{ \begin{aligned} {n_{{{\text{p}}_{\text{a}}}}} = \alpha \\ {n_{{{\text{p}}_{\text{c}}}}} = \rho\end{aligned} \right.$ 0 $ \left\{ \begin{aligned}& \alpha = \dfrac{{{g^2}}}{{4\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \\ &\rho = \dfrac{{{J^2}}}{{4\varDelta _{\text{c}}^{2}}}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \end{aligned} \right. $
    布局数差分布$\varDelta {n_{\text{a}}} = \beta - \dfrac{1}{2}$ $ - \dfrac{1}{2}$ $ - \dfrac{{g_{\text{c}}^{J2}}}{{2{g^2}}} $
    平均基态能量$\varepsilon = \dfrac{{{H_0}}}{{{\omega _0}}}$ $ - \dfrac{1}{2}$ $ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}}}}\left(1 + \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) $
    下载: 导出CSV

    表 3  4个红点AD在$ \zeta /{\omega _{\text{b}}}{\text{ = 0, 1}}{\text{.0, 2}}{.0} $时, 3个参量$ \alpha $, $ \beta $, $ \rho $的解的具体数值

    Table 3.  When the four red dots are at $ \zeta /{\omega _{\text{b}}}{\text{ = 0, 1}}{\text{.0, 2}}{.0} $, the specific values of the solutions of the three parameters $ \alpha $, $ \beta $, $ \rho $.

    正常相区点A 正常相区点B
    $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $
    0 $ \left\{ \begin{aligned} \alpha = {2}{.380} \\ \beta = {0}{.228} \\ \rho = {7}{.107}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.663} \\ \beta = {0}{.112} \\ \rho = {1}{.725}\end{aligned} \right.{\text{ }} $ $ 0 $ $ \left\{ \begin{aligned} \alpha = {2}{.739} \\ \beta = {0}{.313} \\ \rho = {6}{.835}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.868} \\ \beta = {0}{.209} \\ \rho = {1}{.571}\end{aligned} \right.{\text{ }} $
    超辐射区相点C 超辐射区相点D
    $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $
    $ \left\{ \begin{aligned} \alpha = {0}{.534} \\ \beta = {0}{.260} \\ \rho = {0}{.134}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.541} \\ {\beta _1} = {0}{.261} \\ {\rho _1} = {0}{.139}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {3}{.474} \\ {\beta _2} = {0}{.395} \\ {\rho _2} = {6}{.280}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _1} = {0}{.568} \\ {\beta _1} = {0}{.262} \\ {\rho _1} = {0}{.162}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {1}{.295} \\ {\beta _2} = {0}{.334} \\ {\rho _2} = {1}{.203}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} \alpha = 0.889 \\ \beta = {0}{.333} \\ \rho = {0}{.222}\end{aligned} \right. $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.905} \\ {\beta _1} = {0}{.335} \\ {\rho _1} = {0}{.237}\end{aligned} \right. $
    $ \left\{ \begin{aligned} {\alpha _2} = {3}{.853} \\ {\beta _2} = {0}{.416} \\ {\rho _2} = {5}{.989}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _1} = {1}{.000} \\ {\beta _1} = {0}{.342} \\ {\rho _1} = {0}{.332}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {1}{.462} \\ {\beta _2} = {0}{.367} \\ {\rho _2} = {0}{.946}\end{aligned} \right.{\text{ }} $
    下载: 导出CSV
  • [1]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [2]

    Wang Y K, Hioe F T 1973 Phys. Rev. A. 7 831Google Scholar

    [3]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069Google Scholar

    [5]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [6]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [7]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [8]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar

    [9]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [10]

    Shen L T, Pei X T, Shi Z C, Yang Z B 2024 Eur. Phys. J. D 78 91Google Scholar

    [11]

    LuoY Q, Liu N, Liang J Q 2024 Phys. Rev. A 110 063320Google Scholar

    [12]

    Qin W, Zheng D C, Wu Z D , Chen Y H, Liao R Y 2024 Phys. Rev. A 109 013310

    [13]

    赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [14]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [15]

    Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601Google Scholar

    [16]

    Samanta A, Jana P C 2023 Journal of Optics 52 494Google Scholar

    [17]

    Li L C, Zhang J Q 2021 Photonics 8 588Google Scholar

    [18]

    Lan Z L, Chen Y W, Cheng L Y, Chen L, Ye S Y, Zhong Z R 2024 Quantum Inf. Process. 23 72Google Scholar

    [19]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar

    [20]

    Bai C H, Wang D Y, Wang H F, Zhu A D, Zhang S 2016 Sci. Rep. 6 33404Google Scholar

    [21]

    Nejad A A, Askari H R, Baghshahi H R 2017 Appl. Opt. 56 2816Google Scholar

    [22]

    Huang S, Liu N, Liang J Q, Li H B 2021 Phys. Scr. 96 095801Google Scholar

    [23]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [24]

    Clive E, Tobias B 2003 Phys. Rev. E 67 066203Google Scholar

    [25]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar

    [26]

    Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [27]

    黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽 2015 物理学报 64 044204Google Scholar

    Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204Google Scholar

    [28]

    刘要稳, 赵鸿, 汪映海 1999 物理学报 48 198Google Scholar

    Liu Y W, Zhao H, Wang Y H 1999 Acta Phys. Sin. 48 198Google Scholar

  • [1] 佘彦超, 徐名琪, 冯雯雅, 刘嘉琦, 杨红. 量子点-双腔磁光机械系统中的磁振子双稳态. 物理学报, doi: 10.7498/aps.74.20250172
    [2] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, doi: 10.7498/aps.73.20241103
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, doi: 10.7498/aps.71.20220691
    [4] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, doi: 10.7498/aps.70.20210178
    [5] 刘妮, 王建芬, 梁九卿. 双光腔耦合下机械振子的基态冷却. 物理学报, doi: 10.7498/aps.69.20191541
    [6] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究. 物理学报, doi: 10.7498/aps.67.20172467
    [7] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, doi: 10.7498/aps.67.20172170
    [8] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, doi: 10.7498/aps.66.074211
    [9] 肖佳, 徐大海, 伊珍, 谷文举. 三机械薄膜腔光力系统相互作用的研究. 物理学报, doi: 10.7498/aps.65.124202
    [10] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备. 物理学报, doi: 10.7498/aps.61.230301
    [11] 陈华俊, 米贤武. 强耦合光机械腔中的简正模式分裂和冷却. 物理学报, doi: 10.7498/aps.60.124206
    [12] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟. 物理学报, doi: 10.7498/aps.59.6243
    [13] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, doi: 10.7498/aps.59.3627
    [14] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, doi: 10.7498/aps.57.2048
    [15] 钱 妍, 马爱群, 马志民, 刘正君, 刘树田. 压缩真空场与耦合双原子Raman相互作用过程中光场的相位演化特性. 物理学报, doi: 10.7498/aps.56.4571
    [16] 黄春佳, 贺慧勇, 孔凡志, 方家元. 光场与V型三能级原子依赖强度耦合系统场熵的演化特性. 物理学报, doi: 10.7498/aps.53.2539
    [17] 黄春佳, 厉江帆, 贺慧勇. 压缩真空场与耦合双原子Raman相互作用过程中光场的量子特性. 物理学报, doi: 10.7498/aps.50.473
    [18] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, doi: 10.7498/aps.50.1279
    [19] 黄春佳, 周 明, 厉江帆, 孔凡志. 双模压缩真空场与耦合双原子相互作用系统中光场的量子特性. 物理学报, doi: 10.7498/aps.49.2159
    [20] 欧发, 魏宝华, 刘翠红. 增强吸收型光双稳临界现象的平均场理论. 物理学报, doi: 10.7498/aps.43.707
计量
  • 文章访问数:  278
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-02-23
  • 上网日期:  2025-03-27

/

返回文章
返回