搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强耦合光机械腔中的简正模式分裂和冷却

陈华俊 米贤武

引用本文:
Citation:

强耦合光机械腔中的简正模式分裂和冷却

陈华俊, 米贤武

Normal mode splitting and cooling in strong coupling optomechanical cavity

Chen Hua-Jun, Mi Xian-Wu
PDF
导出引用
  • 研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.
    A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity is investigated by a linearized quantum Langevin equation. The spectrum of the oscillator presents normal mode splitting with the increase of the input laser power in strong coupling regime and our results are in good agreement with the experimental results. The effective mechanical damping and the resonance frequency shift are derived. The redshifted sideband leads to the cooling of the mechanical oscillator, and the blueshifted motional sideband results in amplification. Furthermore, an approximate mechanism is introduced to analyze the cooling of the mechanical oscillator. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Meanwhile, we give three key factors influencing the cooling of mechanical oscillator, these being initial bath temperature, input laser power and mechanical quality factor.
    • 基金项目: 国家自然科学基金(批准号:10647132)和湖南省教育厅科研基金(批准号:10A100)资助的课题.
    [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
计量
  • 文章访问数:  3487
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-08
  • 修回日期:  2011-08-09
  • 刊出日期:  2011-06-05

强耦合光机械腔中的简正模式分裂和冷却

  • 1. 吉首大学物理科学与信息工程学院,吉首 416000
    基金项目: 

    国家自然科学基金(批准号:10647132)和湖南省教育厅科研基金(批准号:10A100)资助的课题.

摘要: 研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.

English Abstract

参考文献 (79)

目录

    /

    返回文章
    返回