搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaN的高增益微型光伏逆变器

林逸垒 杨翠 王新怀 毛维 葛崇志 于龙洋 张春福 张进成 郝跃

引用本文:
Citation:

基于GaN的高增益微型光伏逆变器

林逸垒, 杨翠, 王新怀, 毛维, 葛崇志, 于龙洋, 张春福, 张进成, 郝跃
cstr: 32037.14.aps.74.20241798

New high-gain micro photovoltaic inverter based on GaN

LIN Yilei, YANG Cui, WANG Xinhuai, MAO Wei, GE Chongzhi, YU Longyang, ZHANG Chunfu, ZHANG Jincheng, HAO Yue
cstr: 32037.14.aps.74.20241798
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 微型逆变器以其模块化、灵活等优势, 近年来已被广泛应用于分布式光伏发电系统中. 然而受拓扑结构和传统功率器件性能的影响, 目前微型逆变器拓扑的电压增益低、可靠性差等问题仍制约着微型逆变器的进一步发展. 为此, 本文提出并研制了一种基于氮化镓高电子迁移率晶体管(GaN HEMT)的增强型开关电感准Z源逆变器. 该逆变器首次采用了辅助升压单元融合开关电感准Z源网络的新型拓扑结构, 显著提高了低直通占空比下的电压增益, 同时降低了开关器件电压应力. 此外, 采用GaN HEMT作为逆变器功率开关器件, 设计了专用负压关断驱动电路, 将功率管开关频率从传统的10 kHz提高到100 kHz, 减小了电感及其他无源器件的体积. 经样机系统测试, 在直通占空比为0.2时, 逆变器实际升压因子达到5.75, 较其他开关电感准Z源型逆变器拓扑提高了15%. 本研究在现有拓扑结构的基础上有效地提高了电压增益, 结合GaN HEMT的应用, 为高效、紧凑的微型逆变器设计提供了新的技术路径.
    Microinverters have been widely used in distributed photovoltaic (PV) systems in recent years due to their modularity and flexibility. However, the current development of microinverter topologies faces significant challenges, such as low voltage gain and limited reliability. To solve these problems, an enhanced switched-inductor quasi-Z-Source inverter (ESL-qZSI) based on gallium nitride high electron mobility transistor (GaN HEMT) is proposed in this work. The proposed inverter introduces a novel topology that integrates an auxiliary boost unit with a switched-inductor quasi-Z-source network. This topology significantly enhances the voltage gain at low shoot-through duty ratios and reduces the voltage stress across the switching device. Additionally, the use of GaN HEMT as power switching components increases the switching frequency from the traditional 10 kHz to 100 kHz, in which a specialized negative turn-off gate driver circuit is designed to adapt the characteristics of the GaN HEMT and to ensure reliable switching operation. This increase in frequency reduces the size of passive components, such as inductors. Experimental results show that the proposed inverter achieves a boost factor of 5.75 at a shoot-through duty ratio of 0.2, which indicates that its performance is improved by 15% and 91% greater than the traditional switched-inductor-capacitor quasi-Z-source inverter (SLC-qZSI) and the traditional switched-inductor Z-source inverter (SL-ZSI), respectively. These results confirm that the proposed inverter enhances the voltage gain of existing topologies. Besides, compared with SLC-qZSI, the proposed inverter can obtain a higher efficiency of 90.5%, which shows the advantage of efficiency. In conclusion, the proposed ESL-qZSI with GaN HEMT provides a hopeful solution for high-efficiency and compact microinverter systems in photovoltaic applications.
      通信作者: 杨翠, ycxd503@126.com ; 王新怀, xinhuaiwang@xidian.edu.cn ; 毛维, mwxidian@126.com
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3604303, 2022YFB3604300)和国家自然科学基金创新研究群体科学基金(批准号: 62421005)资助的课题.
      Corresponding author: YANG Cui, ycxd503@126.com ; WANG Xinhuai, xinhuaiwang@xidian.edu.cn ; MAO Wei, mwxidian@126.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3604303, 2022YFB3604300) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 62421005).
    [1]

    Hmad J, Houari A, Bouzid A E M, Saim A, Trabelsi H 2023 Energies 16 5062Google Scholar

    [2]

    Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E 2021 Energies 14 5375Google Scholar

    [3]

    Wang Q, Zhao B, Sun H D 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) Wuhan, China, 2020 p1407

    [4]

    Priyadarshi N, Padmanaban S, Ionel D M, Mihet-Popa L, Azam F 2018 Energies 11 2277Google Scholar

    [5]

    Monjo L, Sainz L, Mesas J J, Pedra J 2021 Energies 14 508Google Scholar

    [6]

    Peng F Z 2003 IEEE Trans. Ind. Appl. 39 504Google Scholar

    [7]

    Yuan J, Yang Y H, Blaabjerg F 2020 Energies 13 1390Google Scholar

    [8]

    Samanbakhsh R, Koohi P, Ibanez F M, Martin F, Terzija V 2023 Int. J. Electr. Power Energy Syst. 147 108819Google Scholar

    [9]

    Li Y, Anderson J, Peng F Z, Liu D C 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition Washington, DC, USA, 2009 p918

    [10]

    Rajan V R, Premalatha L 2017 Int. J. Power Electron. Drive Syst. 8 325Google Scholar

    [11]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circuits Syst. Regul. Pap. 55 687Google Scholar

    [12]

    刘洪臣, 杨爽, 王国立, 李飞 2013 物理学报 62 150505Google Scholar

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505Google Scholar

    [13]

    Zhu M, Yu K, Luo F L 2010 IEEE Trans. Power Electron. 25 2150Google Scholar

    [14]

    Nguyen M K, Lim Y C, Cho G B 2011 IEEE Trans. Power Electron. 26 3183Google Scholar

    [15]

    Zhu X Q, Zhang B, Qiu D Y 2018 IET Power Electron. 11 1774Google Scholar

    [16]

    Karbalaei A R, Mardaneh M 2021 IEEE Ind. Electron. Mag. 15 4Google Scholar

    [17]

    Bolaghi J A, Taheri A, Babaei M H, Gholami M, Harajchi S 2023 IETE J. Res. 70 4231Google Scholar

    [18]

    Chaudhary O S, Denaï M, Refaat S S, Pissanidis G 2023 Energies 16 6689Google Scholar

    [19]

    Zhang Y J, Li J G, Wang J H, Zheng T Q, Jia P Y 2022 Energies 15 7791Google Scholar

    [20]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [21]

    王帅, 葛晨, 徐祖银, 成爱强, 陈敦军 2024 物理学报 73 177101Google Scholar

    Wang S, Ge C, Xu Z Y, Cheng A Q, Chen D J 2024 Acta Phys. Sin. 73 177101Google Scholar

    [22]

    Morita T, Tamura S, Anda Y, Ishida M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2011 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Fort Worth, TX, USA, 2011 p481

    [23]

    Zhao C W, Trento B, Jiang L, Jones E A, Liu B, Zhang Z Y, Costinett D, Wang F, Tolbert L M, Jansen J F, Kress R, Langley R 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 824Google Scholar

    [24]

    Jagan V, Ullemgondla G, Thati D, Salveru B, Ongole D, Banoth S 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, 2024 p475

    [25]

    谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510Google Scholar

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510Google Scholar

    [26]

    廖志贤, 罗晓曙, 黄国现 2015 物理学报 64 130503Google Scholar

    Liao Z X, Luo X S, Huang G X 2015 Acta Phys. Sin. 64 130503Google Scholar

    [27]

    易龙强, 郜克存 2008 电力电子技术 42 50Google Scholar

    Yi L Q, Gao K C 2008 Power Electron. 42 50Google Scholar

  • 图 1  ESL-qZSI拓扑

    Fig. 1.  ESL-qZSI topology.

    图 2  ESL-qZSI拓扑的直通模态等效电路

    Fig. 2.  Equivalent circuits of ESL-qZSI topology in shoot-through states.

    图 3  ESL-qZSI拓扑的非直通模态等效电路

    Fig. 3.  Equivalent circuits of ESL-qZSI topology in nonshoot-through states.

    图 4  不同拓扑升压能力对比 (a)升压因子B; (b)电压增益G

    Fig. 4.  Boosting capability comparison of different topologies: (a) Boost factor B; (b) voltage gain G

    图 5  不同拓扑开关器件电压应力对比

    Fig. 5.  Switching voltage stress comparison of different topologies.

    图 6  负压关断驱动电路

    Fig. 6.  Driver circuit with negative voltage turn-off.

    图 7  直流链电压仿真波形

    Fig. 7.  Simulation result of DC-link voltage waveform.

    图 8  仿真滤波输出 (a) 电压波形; (b) THD分析

    Fig. 8.  Simulation result of filter output: (a) Voltage waveform; (b) analysis of THD.

    图 9  ESL-qZSI电容电压应力仿真结果

    Fig. 9.  Capacitor voltage stress simulation results of ESL-qZSI.

    图 10  ESL-qZSI系统测试平台

    Fig. 10.  ESL-qZSI system test platform.

    图 11  系统驱动波形

    Fig. 11.  Experimental result of system drive waveform.

    图 12  直流链电压实测波形

    Fig. 12.  Experimental result of DC-link voltage waveform.

    图 13  逆变器输出电压实测波形

    Fig. 13.  Experimental result of inverter output voltage waveform.

    图 14  逆变器输出波形THD分析

    Fig. 14.  THD analysis of inverter output voltage.

    表 1  ESL-qZSI拓扑特性

    Table 1.  Characteristics of ESL-qZSI topology.

    参数名称 参数值
    升压因子(B) $ \dfrac{2}{1-4 D+3 D^{2}} $
    电压增益(G) $ \dfrac{2}{3 M-2} $
    开关管电压应力Vsw/Vin $ \dfrac{3 G^{2}}{2 G+2} $
    C1电压应力VC1/Vin $ \dfrac{1}{1-D} $
    C2电压应力VC2/Vin $ \dfrac{1}{1-3 D} $
    C3电压应力VC3/Vin $ \dfrac{2 D}{1-4 D+3 D^{2}} $
    C4电压应力VC4/Vin $ \dfrac{2}{1-3 D} $
    D1/D2电压应力VD/Vin $ \dfrac{2}{1-4 D+3 D^{2}} $
    D3/D4/D5电压应力VD/Vin $ \dfrac{1-D}{1-4 D+3 D^{2}} $
    下载: 导出CSV

    表 2  驱动电路关键参数

    Table 2.  Key parameters of driver circuit.

    参数名称R7R5R4C6/nFC3/nFC4/nF
    参数值470103.331001
    下载: 导出CSV

    表 3  ESL-qZSI实验参数

    Table 3.  Experimental parameters of ESL-qZSI.

    参数名称 参数值
    输入电压/V 64
    开关频率/kHz 100
    准Z源网络电容/μF 100
    准Z源网络电感/mH 0.5
    LC滤波电容/μF 20
    LC滤波电感/mH 1
    直通占空比D 0.2
    基准频率/Hz 50
    下载: 导出CSV

    表 4  不同拓扑的典型结果对比

    Table 4.  Typical results of different inverter topologies.

    参数 逆变器拓扑类型
    SL-ZSI SLC-qZSI ESL-qZSI
    数据类型 样机
    测试结果
    理论
    计算结果
    样机
    测试结果
    样机
    测试结果
    输入电压Vin/V 36 36 80 64
    直通占空比D 0.3 0.2 0.206 0.2
    调制系数M 0.7 0.8 0.794 0.8
    升压因子B 13 3 5 5.75
    开关频率/kHz 10 10 13.3 100
    效率/% 88.5 90.5
    下载: 导出CSV
  • [1]

    Hmad J, Houari A, Bouzid A E M, Saim A, Trabelsi H 2023 Energies 16 5062Google Scholar

    [2]

    Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E 2021 Energies 14 5375Google Scholar

    [3]

    Wang Q, Zhao B, Sun H D 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) Wuhan, China, 2020 p1407

    [4]

    Priyadarshi N, Padmanaban S, Ionel D M, Mihet-Popa L, Azam F 2018 Energies 11 2277Google Scholar

    [5]

    Monjo L, Sainz L, Mesas J J, Pedra J 2021 Energies 14 508Google Scholar

    [6]

    Peng F Z 2003 IEEE Trans. Ind. Appl. 39 504Google Scholar

    [7]

    Yuan J, Yang Y H, Blaabjerg F 2020 Energies 13 1390Google Scholar

    [8]

    Samanbakhsh R, Koohi P, Ibanez F M, Martin F, Terzija V 2023 Int. J. Electr. Power Energy Syst. 147 108819Google Scholar

    [9]

    Li Y, Anderson J, Peng F Z, Liu D C 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition Washington, DC, USA, 2009 p918

    [10]

    Rajan V R, Premalatha L 2017 Int. J. Power Electron. Drive Syst. 8 325Google Scholar

    [11]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circuits Syst. Regul. Pap. 55 687Google Scholar

    [12]

    刘洪臣, 杨爽, 王国立, 李飞 2013 物理学报 62 150505Google Scholar

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505Google Scholar

    [13]

    Zhu M, Yu K, Luo F L 2010 IEEE Trans. Power Electron. 25 2150Google Scholar

    [14]

    Nguyen M K, Lim Y C, Cho G B 2011 IEEE Trans. Power Electron. 26 3183Google Scholar

    [15]

    Zhu X Q, Zhang B, Qiu D Y 2018 IET Power Electron. 11 1774Google Scholar

    [16]

    Karbalaei A R, Mardaneh M 2021 IEEE Ind. Electron. Mag. 15 4Google Scholar

    [17]

    Bolaghi J A, Taheri A, Babaei M H, Gholami M, Harajchi S 2023 IETE J. Res. 70 4231Google Scholar

    [18]

    Chaudhary O S, Denaï M, Refaat S S, Pissanidis G 2023 Energies 16 6689Google Scholar

    [19]

    Zhang Y J, Li J G, Wang J H, Zheng T Q, Jia P Y 2022 Energies 15 7791Google Scholar

    [20]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [21]

    王帅, 葛晨, 徐祖银, 成爱强, 陈敦军 2024 物理学报 73 177101Google Scholar

    Wang S, Ge C, Xu Z Y, Cheng A Q, Chen D J 2024 Acta Phys. Sin. 73 177101Google Scholar

    [22]

    Morita T, Tamura S, Anda Y, Ishida M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2011 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Fort Worth, TX, USA, 2011 p481

    [23]

    Zhao C W, Trento B, Jiang L, Jones E A, Liu B, Zhang Z Y, Costinett D, Wang F, Tolbert L M, Jansen J F, Kress R, Langley R 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 824Google Scholar

    [24]

    Jagan V, Ullemgondla G, Thati D, Salveru B, Ongole D, Banoth S 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, 2024 p475

    [25]

    谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510Google Scholar

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510Google Scholar

    [26]

    廖志贤, 罗晓曙, 黄国现 2015 物理学报 64 130503Google Scholar

    Liao Z X, Luo X S, Huang G X 2015 Acta Phys. Sin. 64 130503Google Scholar

    [27]

    易龙强, 郜克存 2008 电力电子技术 42 50Google Scholar

    Yi L Q, Gao K C 2008 Power Electron. 42 50Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 龚仁喜, 尹志红. 一种单相H桥光伏逆变器混沌控制方法. 物理学报, 2021, 70(2): 020501. doi: 10.7498/aps.70.20200982
    [3] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [4] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 刘康, 孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析. 物理学报, 2020, 69(2): 028501. doi: 10.7498/aps.69.20190921
    [7] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [8] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [9] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [11] 王冲, 赵梦荻, 裴九清, 何云龙, 李祥东, 郑雪峰, 毛维, 马晓华, 张进成, 郝跃. AlGaN/GaN双异质结F注入增强型高电子迁移率晶体管. 物理学报, 2016, 65(3): 038501. doi: 10.7498/aps.65.038501
    [12] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [13] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [14] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [15] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [16] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [17] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [18] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [19] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
计量
  • 文章访问数:  286
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-02-22
  • 上网日期:  2025-03-21

/

返回文章
返回