搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaN的高增益微型光伏逆变器研究

林逸垒 杨翠 王新怀 毛维 葛崇志 于龙洋 张春福 张进成 郝跃

引用本文:
Citation:

基于GaN的高增益微型光伏逆变器研究

林逸垒, 杨翠, 王新怀, 毛维, 葛崇志, 于龙洋, 张春福, 张进成, 郝跃

A New High-Gain Micro Photovoltaic Inverter Based on GaN

Lin Yi-Lei, Yang Cui, Wang Xin-Huai, Mao Wei, Ge Chong-Zhi, Yu Long-Yang, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 微型逆变器以其模块化、灵活等优势,近年来已广泛应用于分布式光伏发电系统中.然而受拓扑结构和传统功率器件性能的影响,目前微型逆变器拓扑的电压增益低、可靠性差等问题仍制约着微型逆变器的进一步发展.为此,本文提出并研制了一种基于GaN HEMT的增强型开关电感准Z源逆变器.该逆变器首次采用了辅助升压单元融合开关电感准Z源网络的新型拓扑结构,显著提高了低直通占空比下的电压增益,同时降低了开关器件电压应力.此外,采用GaN HEMT作为逆变器功率开关器件,设计了专用负压关断驱动电路,将功率管开关频率从传统的10 kHz提高到100 kHz,减小了电感及其他无源器件的体积.经样机系统测试,在直通占空比为0.2时,逆变器实际升压因子达到5.75,较其他开关电感准Z源型逆变器拓扑提高了15%.本研究在现有拓扑结构的基础上有效提高了电压增益,结合GaN HEMT的应用,为高效、紧凑的微型逆变器设计提供了新的技术路径.
    Microinverters have been widely used in distributed photovoltaic (PV) systems in recent years due to their modularity and flexibility. However, the current development of microinverter topologies faces significant challenges, such as low voltage gain and limited reliability. To address these problems, this paper proposes an Enhanced Switched-Inductor quasi-Z-Source inverter (ESL-qZSI) based on Gallium Nitride High Electron Mobility Transistor (GaN HEMT). The proposed inverter introduces a novel topology that integrates an auxiliary boost unit with a switched-inductor quasi-Z-source network. This topology significantly enhances the voltage gain under low shoot-through duty ratios and reduces the voltage stress across the switching devices. Additionally, the use of GaN HEMT as power switching components increases the switching frequency from the conventional 10 kHz to 100 kHz, in which a specialized negative turn-off gate driver circuit is proposed to adapt the characteristics of the GaN HEMT and to ensure reliable switching operation. This increase in frequency reduces the size of passive components, such as inductors. Experimental results show that the proposed inverter achieves a boost factor of 5.75 at a shoot-through duty ratio of 0.2, which indicates a 15% improvement and a 91% improvement greater than the results of the conventional switched-inductor-capacitor quasi-Z-source inverter (SLC-qZSI) and the conventional switched-inductor Z-source inverter (SL-ZSI), respectively. These results confirm that the proposed inverter enhances the voltage gain of existing topologies. Besides, compared with SLC-qZSI, the proposed inverter could obtain a higher efficiency of 90.5%, which exhibites the advantage of efficiency. In conclusion, the proposed ESL-qZSI with GaN HEMT provides a promising solution for high-efficiency and compact microinverter systems in photovoltaic applications.
  • [1]

    Hmad J, Houari A, Bouzid A E M, Saim A, Trabelsi H 2023Energies 16 5062

    [2]

    Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E 2021Energies 14 5375

    [3]

    Wang Q, Zhao B, Sun H D 2020IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) Wuhan, China, 2020 p1407

    [4]

    Priyadarshi N, Padmanaban S, Ionel D M, Mihet-Popa L, Azam F 2018Energies 11 2277

    [5]

    Monjo L, Sainz L, Mesas J J, Pedra J 2021Energies 14 508

    [6]

    Peng F Z 2003IEEE Trans. Ind. Appl. 39 504

    [7]

    Yuan J, Yang Y H, Blaabjerg F 2020Energies 13 1390

    [8]

    Samanbakhsh R, Koohi P, Ibanez F M, Martin F, Terzija V 2023Int. J. Electr. Power Energy Syst. 147 108819

    [9]

    Li Y, Anderson J, Peng F Z, Liu D C 2009Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition Washington, DC, USA, 2009 p918

    [10]

    Rajan V R, Premalatha L 2017Int. J. Power Electron. Drive Syst. 8 325

    [11]

    Axelrod B, Berkovich Y, Ioinovici A 2008IEEE Trans. Circuits Syst. I Regul. Pap. 55 687

    [12]

    Liu H C, Yang S, Wang G L, Li F 2013Acta Phys. Sin. 62 150505(in Chinese)[刘洪臣,杨爽,王国立,李飞2013物理学报62 150505]

    [13]

    Zhu M, Yu K, Luo F L 2010IEEE Trans. Power Electron. 25 2150

    [14]

    Nguyen M K, Lim Y C, Cho G B 2011 IEEE Trans. Power Electron. 26 3183

    [15]

    Zhu X Q, Zhang B, Qiu D Y 2018IET Power Electron. 11 1774

    [16]

    Karbalaei A R, Mardaneh M 2021 IEEE Ind. Electron. Mag. 15 4

    [17]

    Bolaghi J A, Taheri A, Babaei M H, Gholami M, Harajchi S 2023IETE J. Res. 70 4231

    [18]

    Chaudhary O S, Denaï M, Refaat S S, Pissanidis G 2023 Energies 16 6689

    [19]

    Zhang Y J, Li J G, Wang J H, Zheng T Q, Jia P Y 2022Energies 15 7791

    [20]

    Cheng Z 2021Acta Phys. Sin. 70 236502(in Chinese)[程哲2021物理学报70 236502]

    [21]

    Wang S, Ge C, Xu Z Y, Cheng A Q, Chen D J 2024Acta Phys. Sin. 73 177101(in Chinese)[王帅,葛晨,徐祖银,成爱强,陈敦军2024物理学报73 177101]

    [22]

    Morita T, Tamura S, Anda Y, Ishida M, Uemoto Y, Ueda T, Tanaka T, Ueda D 201126th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Fort Worth, TX, USA, 2011 p481

    [23]

    Zhao C W, Trento B, Jiang L, Jones E A, Liu B, Zhang Z Y, Costinett D, Wang F, Tolbert L M, Jansen J F, Kress R, Langley R 2016IEEE J. Emerging Sel. Top. Power Electron. 4 824

    [24]

    Jagan V, Ullemgondla G, Thati D, Salveru B, Ongole D, Banoth S 20243rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, 2024 p475

    [25]

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014Acta Phys. Sin. 63 120510(in Chinese)[谢瑞良,郝翔,王跃,杨旭,黄浪,王超,杨月红2014物理学报63 120510]

    [26]

    Liao Z X, Luo X S, Huang G X 2015Acta Phys. Sin. 64 130503(in Chinese)[廖志贤,罗晓曙,黄国现2015物理学报64 130503]

    [27]

    Yi L Q, Gao K C 2008Power Electronics 42 50(in Chinese)[易龙强,郜克存2008电力电子技术42 50]

  • [1] 蔡静, 姚若河, 耿魁伟. AlxGa1–xN插入层对双沟道n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT器件性能的影响. 物理学报, doi: 10.7498/aps.71.20220403
    [2] 黄兴杰, 邢艳辉, 于国浩, 宋亮, 黄荣, 黄增立, 韩军, 张宝顺, 范亚明. 具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究. 物理学报, doi: 10.7498/aps.71.20212192
    [3] 龚仁喜, 尹志红. 一种单相H桥光伏逆变器混沌控制方法. 物理学报, doi: 10.7498/aps.70.20200982
    [4] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料. 物理学报, doi: 10.7498/aps.67.20172581
    [5] 廖志贤, 罗晓曙, 黄国现. 两级式光伏并网逆变器建模与非线性动力学行为研究. 物理学报, doi: 10.7498/aps.64.130503
    [6] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, doi: 10.7498/aps.63.117302
    [7] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, doi: 10.7498/aps.61.227302
    [8] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, doi: 10.7498/aps.60.097101
    [9] 郝立超, 段俊丽. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, doi: 10.7498/aps.59.2746
    [10] 王林, 胡伟达, 陈效双, 陆卫. AlGaN/GaN HEMT器件电流坍塌和膝点电压漂移机理的研究. 物理学报, doi: 10.7498/aps.59.5730
    [11] 丁国建, 郭丽伟, 邢志刚, 陈耀, 徐培强, 贾海强, 周均铭, 陈弘. 使用AlN/GaN超晶格势垒层生长高Al组分AlGaN/GaN HEMT结构. 物理学报, doi: 10.7498/aps.59.5724
    [12] 谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃. 60Co γ射线辐射对AlGaN/GaN HEMT器件的影响. 物理学报, doi: 10.7498/aps.58.1161
    [13] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, doi: 10.7498/aps.58.536
    [14] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, doi: 10.7498/aps.58.511
    [15] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, doi: 10.7498/aps.58.1966
    [16] 席光义, 任 凡, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 韩彦军, 罗 毅. AlGaN表面坑状缺陷及GaN缓冲层位错缺陷对AlGaN/GaN HEMT电流崩塌效应的影响. 物理学报, doi: 10.7498/aps.57.7238
    [17] 魏 巍, 林若兵, 冯 倩, 郝 跃. 场板结构AlGaN/GaN HEMT的电流崩塌机理. 物理学报, doi: 10.7498/aps.57.467
    [18] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响. 物理学报, doi: 10.7498/aps.56.3393
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, doi: 10.7498/aps.56.2895
    [20] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, doi: 10.7498/aps.55.3622
计量
  • 文章访问数:  92
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-21

/

返回文章
返回