搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理

周幸叶 吕元杰 谭鑫 王元刚 宋旭波 何泽召 张志荣 刘庆彬 韩婷婷 房玉龙 冯志红

引用本文:
Citation:

基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理

周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红

Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement

Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong
PDF
导出引用
  • 陷阱效应导致的电流崩塌是制约GaN基微波功率电子器件性能提高的一个重要因素,研究深能级陷阱行为对材料生长和器件开发具有非常重要的意义.随着器件频率的提升,器件尺寸不断缩小,对小尺寸器件中深能级陷阱的表征变得越发困难.本文制备了超短栅长(Lg=80 nm)的AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOSHEMT),并基于脉冲I-V测试和二维数值瞬态仿真对器件的动态特性进行了深入研究,分析了深能级陷阱对AlGaN/GaN MOSHEMT器件动态特性的影响以及相关陷阱效应的内在物理机制.结果表明,AlGaN/GaN MOSHEMT器件的电流崩塌随着栅极静态偏置电压的增加呈非单调变化趋势,这是由栅漏电注入和热电子注入两种陷阱机制共同作用的结果.根据研究结果推断,可通过改善栅介质的质量以减小栅漏电或提高外延材料质量以减少缺陷密度等措施达到抑制陷阱效应的目的,从而进一步抑制电流崩塌.
    Deep-level trapping effect is one of the most critical issues that restrict the performance improvement of GaN-based microwave power devices. It is of very importance for material growth and device development to study the trapping behavior in the device. In the past decades, there have been made a lot of efforts to characterize and investigate the deep-level trapping phenomena. However, most of the previous researches focused on the large-scale devices. For pursuing higher frequency, the devices need to be scaled down. Consequently, it becomes more difficult to characterize the deep-level traps in small-scale GaN-based devices, since none of the traditional characterization techniques such as capacitance-voltage (C-V) measurement and capacitance deep-level transient spectroscopy (C-DLTS) are applicable to small devices. Pulsed I-V measurement and transient simulation are useful techniques for analyzing trapping effects in AlGaN/GaN high electron mobility transitors (HEMTs). In this work, AlGaN/GaN metal-oxide-semiconductor HEMTs (MOSHEMTs) with very short gate length (Lg=80 nm) are fabricated. Based on the pulsed I-V measurement and two-dimensional transient simulation, the influence of deep-level trap on the dynamic characteristic of short-gate AlGaN/GaN MOSHEMT is investigated. First, the pulsed I-V characteristics of AlGaN/GaN MOSHEMT with different quiescent bias voltages are studied. In addition, the current collapse induced by the trapping effect is extracted as a function of the quiescent bias voltage. Furthermore, the transient current of AlGaN/GaN MOSHEMT is simulated with the calibrated model, and the simulation exhibits a similar result to the measurement. Moreover, the physical mechanism of trapping effect in the device is analyzed based on the experimental data and simulation results. It is shown that the current collapse of AlGaN/GaN MOSHEMT varies non-monotonically with the increase of the gate quiescent bias voltage, which results from the combination effect of the gate leakage injection-related and hot electron injection-related mechanism. In the off state, the current collapse is mainly induced by the traps below the gate, which is dominated by the gate leakage injection mechanism, leading to the decrease of current collapse with the increase of the gate bias voltage. In the on state, the hot electron injection mechanism becomes the dominant factor for trapping effect in the drain access region, resulting in the increase of current collapse. The results in this work indicate that the trap-induced current collapse can be further suppressed by improving the quality of gate dielectric to minimize the gate reverse leakage and by reducing the trap density in the epitaxial layer.
      通信作者: 吕元杰, yuanjielv@163.com
    • 基金项目: 国家自然科学基金(批准号:61604137,61674130)资助的课题.
      Corresponding author: Lv Yuan-Jie, yuanjielv@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604137, 61674130).
    [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [7] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [8] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [9] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [10] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [12] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [13] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [14] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [15] 聂 海, 张 波, 唐先忠. 聚合物掺杂有机小分子发光二极管的电致发光与杂质陷阱效应. 物理学报, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [16] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [17] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [18] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [19] 杨林安, 张义门, 于春利, 张玉明. SiC功率金属-半导体场效应管的陷阱效应模型. 物理学报, 2003, 52(2): 302-306. doi: 10.7498/aps.52.302
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  7155
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-18
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-09-05

/

返回文章
返回