搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种单相H桥光伏逆变器混沌控制方法

龚仁喜 尹志红

引用本文:
Citation:

一种单相H桥光伏逆变器混沌控制方法

龚仁喜, 尹志红

A chaos control method of single-phase H-bridge photovoltaic inverter

Gong Ren-Xi, Yin Zhi-Hong
PDF
HTML
导出引用
  • 比例积分调节单相H桥光伏逆变器存在复杂的分岔与混沌等非线性行为, 这些非线性行为会大大增加输出电流的谐波含量, 降低系统运行的稳定性与供电可靠性. 现有的混沌控制方法存在建模复杂、控制系数难以确定等问题. 针对于此, 本文提出了一种改进指数延迟反馈控制方法. 该方法首先利用系统输出电流与其自身延迟的差值形成反馈信号, 然后将该反馈信号通过指数环节、作差环节和比例环节得到控制信号, 并将该控制信号以反馈的形式施加于被控系统, 同时建立系统的离散映射模型并求取系统雅克比矩阵表达式; 最后基于稳定判据推导出该控制信号的反馈控制系数的限定条件并实施对系统的控制. 为了验证该方法的控制效果, 进行了大量的仿真实验. 结果表明, 该方法能有效抑制系统中的混沌行为, 大大扩展系统稳定运行域.
    There are complex nonlinear behaviors such as bifurcation and chaos in a single-phase H-bridge photovoltaic inverter under proportional integral control, which will increase the harmonic content of the output current greatly and reduce the stability of system operation and reliability of power supply. There are the problems suffering the complicated modeling and difficulty in determining the control coefficients in existing chaos control methods. The exponential delay feedback control is a further development of the delay feedback control, which has the advantages of requiring no precise mathematical model of the system and simple implementation. However, our research shows that when the exponential delay feedback control is directly applied to the system, the feedback intensity cannot be controlled, which will bring too big a disturbance to the system. Based on it, an improved exponential delayed feedback control method is proposed in this paper. Firstly, a feedback signal is formed by the difference between the output current of the system and its own delay, then the feedback signal is used to obtain the control signal through an exponential link, a subtraction link and an proportion link, and the control signal is applied to the controlled system in the form of a feedback. At the same time, the discrete mapping model of the system is established and its Jacobian matrix expression is determined. Finally, the limiting conditions of the feedback control coefficient of the control signal are derived based on the stability criterion, and the control is applied to the system. In order to verify the control effect of this method, a lot of simulation experiments are conducted. The results show that the problems that the exponential delay feedback cannot control the feedback strength and causes excessive disturbance to the system will be effectively solved by this method. When the bifurcation parameters vary greatly, the chaos behaviors in the system will be suppressed effectively, the stable operating domain of the system will be expanded greatly and the harmonic content of the output current will be reduced.
      通信作者: 龚仁喜, rxgong@gxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61561007)和广西自然科学基金(批准号: 2017GXNSFAA198168)资助的课题.
      Corresponding author: Gong Ren-Xi, rxgong@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61561007) and the Natural Science Foundation of Guangxi Province, China (Grant No. 2017GXNSFAA198168)
    [1]

    谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 物理学报 61 058401Google Scholar

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401Google Scholar

    [2]

    Zhusubaliyev Z T, Mosekilde E, Yanochkina O O 2011 IEEE Trans. Power Electron. 26 1270Google Scholar

    [3]

    Kapat S 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1048Google Scholar

    [4]

    Ma W, Wang L, Zhang R, Li J H, Dong Z M, Zhang Y H, Hu M, Liu S X 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1411Google Scholar

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuits Syst. Regul. Pap. 58 2269Google Scholar

    [6]

    Han Y, Fang X, Yang P, Wang C L, Xu L, Guerrero J M 2018 IEEE Trans. Power Electron. 33 6333Google Scholar

    [7]

    Dasgupta S, Sahoo S K, Panda S K 2011 IEEE Trans. Power Electron. 26 717Google Scholar

    [8]

    Zhang H, Ding H H, Yi C Z 2017 Int. J. Bifurcation Chaos 27 1750086Google Scholar

    [9]

    Lei B, Xiao G C, Wu X L, Kafle Y R, Zheng L F 2014 Int. J. Bifurcation Chaos 24 1450002Google Scholar

    [10]

    Tong Y N, Li C L, Zhou F 2016 Optik 127 1724Google Scholar

    [11]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Process. 27 811Google Scholar

    [12]

    Liu W, Wang F Q, Ma X K 2016 Int. J. Bifurcation Chao. 26 1650200Google Scholar

    [13]

    Avrutin V, Mosekilde E, Zhusubaliyev Z T, Gardini L 2015 Chao. 25 043114Google Scholar

    [14]

    Robert B, Robert C 2002 Int. J. Control. 75 1356Google Scholar

    [15]

    Asahara H, Kousaka T 2011 Int. J. Bifurcation Chaos 21 985Google Scholar

    [16]

    Yang F, Yang L H, Ma X K 2016 Int. J. Bifurcation Chaos 26 1650199Google Scholar

    [17]

    Hsieh F H, Wang H K, Chang P L, Chen Y S, Yang Y K 2009 Int. J. Innov. Comput. Inf. Control. 5 4647

    [18]

    Yang L H, Yang L, Yang F, Ma X K 2020 Int. J. Bifurcation Chaos 30 2050005Google Scholar

    [19]

    刘洪臣, 李飞, 杨爽 2013 物理学报 62 110504Google Scholar

    Liu H C, Li F, Yang S, 2013 Acta Phys. Sin. 62 110504Google Scholar

    [20]

    刘洪臣, 杨爽 2013 物理学报 62 210502Google Scholar

    Liu H C, Yang S, 2013 Acta Phys. Sin. 62 210502Google Scholar

    [21]

    Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I -Fundam. Theor. Appl. 50 1125Google Scholar

    [22]

    Feki A, Robert B, Iu H H C 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen Germany, 20−25 June 2004, p3317

    [23]

    Lu W G, Zhao N K, Wu J K, Aroudi E A, Zhou L W 2015 Int. J. Circuit Theory Appl. 43 866Google Scholar

    [24]

    Nakajima H, Ueda Y 1998 Physica D 111 143Google Scholar

  • 图 1  PI调节单相H桥光伏逆变器控制系统 (a)引入EDFC系统原理图; (b) 引入IEDFC系统原理图

    Fig. 1.  PI regulating single-phase H-bridge photovoltaic inverter control system: (a) System schematic diagram with EDFC applied; (b) system schematic diagram with IEDFC applied

    图 2  未引入混沌控制时电感电流峰值处分岔图(n = 100+400k, k = 1, 2, 3, ···) (a) kp为分岔参数时分岔图; (b) E为分岔参数时分岔图

    Fig. 2.  Bifurcation diagram with inductance current at peak value without chaos control (n = 100+ 400k, k = 1, 2, 3, ···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter.

    图 3  未引入混沌控制时特征值轨迹图 (a) kp从0.6增大到2; (b) E从200 V增大到600 V

    Fig. 3.  Eigenvalue trajectory without chaos control: (a) kp increasing from 0.6 to 2; (b) E increasing from 200 V to 600 V.

    图 4  引入EDFC后电感电流峰值处分岔图 (n = 100+400k, k = 1, 2, 3, ···) (a) kp为分岔参数时分岔图; (b) E为分岔参数时分岔图

    Fig. 4.  Bifurcation diagram with inductance current at peak value with EDFC applied (n = 100+ 400k, k = 1, 2, 3···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter

    图 5  引入EDFC后特征值轨迹图 (a) kp从0.6增大到2.0; (b) E从200 V增大到600 V

    Fig. 5.  Eigenvalue trajectory with EDFC applied: (a) with kp increasing from 0.6 to 2.0; (b) with E increasing from 200 V to 600 V.

    图 6  引入IEDFC后电感电流峰值处分岔图 (n = 100+400k, k = 1, 2, 3, ···) (a) 以kp为分岔参数时分岔图; (b) 以E为分岔参数时分岔图

    Fig. 6.  Bifurcation diagram with inductance current at peak value with IEDFC applied (n = 100+400k, k = 1, 2, 3, ···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter

    图 7  引入IEDFC后特征值轨迹图 (a) kp从0.6增大至2.0; (b) E从200 V增大至600 V

    Fig. 7.  Eigenvalue trajectory with IEDFC applied: (a) with kp increasing from 0.6 to 2.0; (b) with E increasing from 200 V to 600 V.

    图 8  未引入混沌控制时的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Fig. 8.  Inductor current without chaos control: (a) Time domain waveform; (b) THD obtained by FFT.

    图 9  引入EDFC后的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Fig. 9.  Inductor current with EDFC applied: (a) Time domain waveform; (b) THD obtained by FFT.

    图 10  引入IEDFC后的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Fig. 10.  Inductor current with IEDFC applied: (a) Time domain waveform; (b) THD obtained by FFT.

    图 11  kp = 1.400时, 引入EDFC后电感电流 (a) 时域波形图; (b) 时域波形局部放大图

    Fig. 11.  Inductor current with EDFC applied for kp = 1.400: (a) Time domain waveform; (b) local magnification diagram of time-domain waveform.

    图 12  kp = 1.400, k1 = 0.707, k2 = 0.630时, 引入IEDFC后电感电流 (a) 时域波形图; (b) 时域波形局部放大图

    Fig. 12.  Inductor current with IEDFC applied for kp = 1.400, k1 = 0.707, k2 = 0.630: (a) Time domain waveform; (b) local magnification diagram of time-domain waveform.

    图 13  kp = 1.4, t = 0.06 s时, 引入其他混沌控制后电感电流 (a) 引入时间延迟反馈控制后; (b) 引入扩展时间延迟反馈控制后; (c) 引入基于滤波器的混沌控制后

    Fig. 13.  Inductor current with other chaos control applied for kp = 1.4, t = 0.06 s: (a) With time-delay feedback control applied; (b) with extended time-delay feedback control applied; (c) with chaos control based on filter applied.

    图 14  引入EDFC后电感电流时域波形图

    Fig. 14.  Time domain waveform with EDFC applied.

    图 15  引入IEDFC后电感电流时域波形图

    Fig. 15.  Time domain waveform with IEDFC applied.

    表 1  电路参数设定值

    Table 1.  Set values of circuit parameters.

    电路参数取值电路参数取值
    直流侧输入电压E/V250载波itri的最大值1
    电感L/mH7载波itri的最小值–1
    电阻R20积分控制系数ki180
    给定参考电流幅值
    irefm/A
    5开关频率fs/kHz20
    载波itri的周期T/μs50调制信号icon
    周期Ts/s
    0.02
    下载: 导出CSV
  • [1]

    谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 物理学报 61 058401Google Scholar

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401Google Scholar

    [2]

    Zhusubaliyev Z T, Mosekilde E, Yanochkina O O 2011 IEEE Trans. Power Electron. 26 1270Google Scholar

    [3]

    Kapat S 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1048Google Scholar

    [4]

    Ma W, Wang L, Zhang R, Li J H, Dong Z M, Zhang Y H, Hu M, Liu S X 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1411Google Scholar

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuits Syst. Regul. Pap. 58 2269Google Scholar

    [6]

    Han Y, Fang X, Yang P, Wang C L, Xu L, Guerrero J M 2018 IEEE Trans. Power Electron. 33 6333Google Scholar

    [7]

    Dasgupta S, Sahoo S K, Panda S K 2011 IEEE Trans. Power Electron. 26 717Google Scholar

    [8]

    Zhang H, Ding H H, Yi C Z 2017 Int. J. Bifurcation Chaos 27 1750086Google Scholar

    [9]

    Lei B, Xiao G C, Wu X L, Kafle Y R, Zheng L F 2014 Int. J. Bifurcation Chaos 24 1450002Google Scholar

    [10]

    Tong Y N, Li C L, Zhou F 2016 Optik 127 1724Google Scholar

    [11]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Process. 27 811Google Scholar

    [12]

    Liu W, Wang F Q, Ma X K 2016 Int. J. Bifurcation Chao. 26 1650200Google Scholar

    [13]

    Avrutin V, Mosekilde E, Zhusubaliyev Z T, Gardini L 2015 Chao. 25 043114Google Scholar

    [14]

    Robert B, Robert C 2002 Int. J. Control. 75 1356Google Scholar

    [15]

    Asahara H, Kousaka T 2011 Int. J. Bifurcation Chaos 21 985Google Scholar

    [16]

    Yang F, Yang L H, Ma X K 2016 Int. J. Bifurcation Chaos 26 1650199Google Scholar

    [17]

    Hsieh F H, Wang H K, Chang P L, Chen Y S, Yang Y K 2009 Int. J. Innov. Comput. Inf. Control. 5 4647

    [18]

    Yang L H, Yang L, Yang F, Ma X K 2020 Int. J. Bifurcation Chaos 30 2050005Google Scholar

    [19]

    刘洪臣, 李飞, 杨爽 2013 物理学报 62 110504Google Scholar

    Liu H C, Li F, Yang S, 2013 Acta Phys. Sin. 62 110504Google Scholar

    [20]

    刘洪臣, 杨爽 2013 物理学报 62 210502Google Scholar

    Liu H C, Yang S, 2013 Acta Phys. Sin. 62 210502Google Scholar

    [21]

    Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I -Fundam. Theor. Appl. 50 1125Google Scholar

    [22]

    Feki A, Robert B, Iu H H C 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen Germany, 20−25 June 2004, p3317

    [23]

    Lu W G, Zhao N K, Wu J K, Aroudi E A, Zhou L W 2015 Int. J. Circuit Theory Appl. 43 866Google Scholar

    [24]

    Nakajima H, Ueda Y 1998 Physica D 111 143Google Scholar

  • [1] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [2] 秦利, 刘福才, 梁利环, 侯甜甜. 基于液体晃动干扰观测器的航天器混沌姿态H∞控制. 物理学报, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [3] 王跃钢, 文超斌, 杨家胜, 左朝阳, 崔祥祥. 基于无模型方法的混沌系统自适应控制. 物理学报, 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [4] 张旭东, 朱萍, 谢小平, 何国光. 混沌神经网络的动态阈值控制. 物理学报, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [5] 任丽娜, 刘福才, 焦晓红, 李俊义. 基于Hamilton模型的永磁同步风力发电系统中混沌运动的H控制. 物理学报, 2012, 61(6): 060506. doi: 10.7498/aps.61.060506
    [6] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制. 物理学报, 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [7] 刘崇新, 翟笃庆, 董子晗, 刘尧. 含有单相铁芯变压器的铁磁混沌电路的分析及控制. 物理学报, 2010, 59(6): 3733-3739. doi: 10.7498/aps.59.3733
    [8] 李东, 张小洪, 杨丹, 王时龙. 参数不确定永磁同步电机混沌的模糊控制. 物理学报, 2009, 58(3): 1432-1440. doi: 10.7498/aps.58.1432
    [9] 高继华, 谢玲玲, 彭建华. 利用速度反馈方法控制时空混沌. 物理学报, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [10] 沈启坤, 张天平, 孙 妍. 具有死区和饱和输入的自适应混沌控制. 物理学报, 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [11] 高 心, 刘兴文. 统一混沌系统的时延模糊控制. 物理学报, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [12] 张 莹, 徐 伟, 孙晓娟, 方 同. 随机Bonhoeffer-Van der Pol系统的随机混沌控制. 物理学报, 2007, 56(10): 5665-5673. doi: 10.7498/aps.56.5665
    [13] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制. 物理学报, 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [14] 于洪洁, 郑 宁. 半周期延迟-非线性反馈控制混沌. 物理学报, 2007, 56(7): 3782-3788. doi: 10.7498/aps.56.3782
    [15] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [16] 周小安, 钱恭斌, 丘水生. 基于改善空间关联性的混沌控制. 物理学报, 2006, 55(8): 3974-3978. doi: 10.7498/aps.55.3974
    [17] 李 爽, 徐 伟, 李瑞红. 利用随机相位实现Duffing系统的混沌控制. 物理学报, 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [18] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [19] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制. 物理学报, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [20] 于洪洁. 延迟-非线性反馈控制混沌. 物理学报, 2005, 54(11): 5053-5057. doi: 10.7498/aps.54.5053
计量
  • 文章访问数:  5510
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-26
  • 修回日期:  2020-08-13
  • 上网日期:  2021-01-11
  • 刊出日期:  2021-01-20

/

返回文章
返回