搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑磁透镜边缘场的质子成像系统优化设计

陈锋 郝建红 许海波

引用本文:
Citation:

考虑磁透镜边缘场的质子成像系统优化设计

陈锋, 郝建红, 许海波

Optimization of proton imaging system including fringe field of magnetic lens

Chen Feng, Hao Jian-Hong, Xu Hai-Bo
PDF
HTML
导出引用
  • 高能质子照相系统由四极磁透镜和准直器组成, 实际透镜的边缘场将影响成像系统的性能. 本文将含边缘场的磁场梯度用贝尔函数近似, 提出了一种含边缘场的成像系统优化方法. 通过Geant 4程序模拟了能量为1.6 GeV的质子成像系统, 并通过优化方法给出了考虑边缘场的优化后的系统参数. 研究了考虑边缘场时的成像系统参数对准直器孔径的影响. 通过对比理想成像系统和优化前后的成像系统在使用准直器时的客体通量分布, 研究了边缘场对质子通过客体的通量影响. 结果表明, 优化后的成像系统可以减小质子通过客体后的通量误差, 并且积分差值在10–2量级时, 准直器的孔径参数变化亦在10–2量级.
    The proton imaging system is composed of four quadrupole magnetic lenses and a collimator. The quadrupole magnetic lenses can realize point-to-point imaging, and the collimator can improve image quality by controlling proton flux and realize material diagnosis. The magnetic field gradient of an ideal quadrupole lens becomes zero at the edge. Inside the lens, the magnetic field gradient is constant along the axis, while the magnetic field boundary of the actual lens extends outward. In the proton imaging system, the fringing field will affect the proton transport state and the performance of the imaging system as well. In this paper, a method to optimize the system is presented when the fringe field is considered. A proton imaging system of 1.6 GeV is established with the Geant 4 program, in which the magnetic field gradient distribution of the actual lens is approximated by the Bell function. In an ideal imaging system, the external drift length is 1.2 m, the internal drift length is 0.5 m, the length of the magnet is 0.8 m, and the magnetic field gradient is 8.09 T/m. The parameters of the practical imaging system can be obtained by using the optimization method: when the integral difference in magnetic field gradient distribution between the actual lens and the ideal lens is equal to zero, the outer drift length of the imaging system is 1.203 m and the inner drift length is 0.506 m; when the integral difference in the magnetic field gradient distribution between the actual lens and the ideal lens is equal to 1%, the outer drift length is 1.208 m and the inner drift length is 0.516 m. In the numerical simulation, a 1mm-thick copper plate and a concentric ball are chosen as the objects, and the influence of the fringing field on the collimator aperture and that on the proton flux error are studied. The results show that the optimized imaging system can reduce the flux error of protons passing through the object, and the difference in the aperture of collimator is on the order of 10–2 when the integral difference is on the order of 10–2 in magnitude.
      通信作者: 许海波, xu_haibo@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11675021)资助的课题
      Corresponding author: Xu Hai-Bo, xu_haibo@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021)
    [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason AJ, Barlow D B, Blind B, et al. 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [5]

    Rigg P A, Schwartz C L, Hixson R S, et al. 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    MorrisC L, AblesE, Alrick KR, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Matthew S. F, Jason A, Camilo E, et al. 2016 Proc. of SPIE 9783 97831X

    [8]

    Matthew S. F, Jason A, Malcolm A, et al. 2017 Rev. Sci. Instrum. 88 013709Google Scholar

    [9]

    AntipovaYM, AfoninaA G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [10]

    GolubevA A, DemidovVS, DemidovaE V, et al. 2010 Tech. Phys. Lett. 36 177Google Scholar

    [11]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust., Explos. Shock Waves 47 627Google Scholar

    [12]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [13]

    Yang J J, Zhen X, Wei S M, et al. 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [14]

    Sheng L N, Zhao Y T, Yang G J, et al. 2014 Laser Part. Beams 32 651Google Scholar

    [15]

    Zhao Y, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 16 1

    [16]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [17]

    Wei T, Yang G J, Long J D, et al. 2013 Chin. Phys. C 37 068201Google Scholar

    [18]

    Zhou Z, Fang Y, Chen H, et al. 2019 Matter Radiat. Extremes 4 065402Google Scholar

    [19]

    Aufderheide M B, ParkH, Hartouni E P1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [20]

    Maksimov A V, Tyurin N E, Fedotov Y S 2014 Tech. Phys. 59 132

    [21]

    Morris C L, Brown E N, Agee C, et al. 2016 Exp. Mech. 56 111Google Scholar

    [22]

    Li Y D, Yang G J, Zhang X D, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 814 104Google Scholar

    [23]

    刘烈烽, 刘承俊, 章冠人 1991 强激光与粒子束 3 535

    Liu L F, Liu C J, Zhang G R, et al. 1991 High Power Laser Part. Beams 3 535

    [24]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Schott W, Springer K, Winter H J, et al. 1973 Nucl. Instrum. Methods 111 541Google Scholar

    [27]

    陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥 2020 物理学报 69 032901Google Scholar

    Chen F, Xu H B, Zheng N, Jia Q G, She R G, Li X El 2020 Acta Phys. Sin. 69 032901Google Scholar

  • 图 1  质子成像系统示意图

    Fig. 1.  Diagram of proton imaging system.

    图 2  磁透镜中磁场梯度分布

    Fig. 2.  Magnetic field distribution in the quadrupole lens.

    图 3  等效漂移距离随着初始位置的改变

    Fig. 3.  Equivalent drift distance varies with the initial position.

    图 4  质子成像系统参数示意图

    Fig. 4.  Diagram of parameters of proton imaging system

    图 5  等效漂移距离相对值的优化曲线 (a) 积分差值为0; (b) 积分差值为1%

    Fig. 5.  Optimized curves of relative value of the equivalent drift distance: (a) The difference of integral value is 0; (b) the difference of integral value is 1%.

    图 6  前端口传输矩阵元随磁场梯度积分差值的变化 (a) x方向; (b) y方向

    Fig. 6.  Transfer matrix elements of the front port varies with the gradient integral difference: (a) x direction; (b) y direction.

    图 7  后端口传输矩阵元随磁场梯度积分差值的变化 (a) x方向; (b) y方向

    Fig. 7.  Transfer matrix elements of the back port varies with the gradient integral difference: (a) x direction; (b) y direction.

    图 8  积分差值为0时质子通过铜板的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Fig. 8.  Flux distribution after passing the round copper plate while the integral difference is 0: (a) 2.0 mrad; (b) 3.5 mrad

    图 9  积分差值等于0时质子通过同心球的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Fig. 9.  Flux distribution after passing the concentric spheres while the integral difference is 0: (a) 2.0 mrad; (b) 3.5 mrad

    图 10  积分差值等于1%时质子通过铜板的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Fig. 10.  Flux distribution after passing the round copper plate while the integral difference is 1%: (a) 2.0 mrad; (b) 3.5 mrad.

    图 11  积分差值等于1%时质子通过同心球的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Fig. 11.  Flux distribution after passing the concentric spheres while the integral difference is 1%: (a) 2.0 mrad; (b) 3.5 mrad.

    表 1  优化前质子成像系统参数

    Table 1.  Parameters of the proton imaging system before optimization.

    类型积分差值/%$d/{\rm{m}}$Ds/m$l/{\rm{m}}$${G_{\rm{o} } }/({\rm{T} } \cdot { {\rm{m} }^{ - {\rm{1} } } })$Dt/m
    理想1.20.88.090.5
    含边缘
    (初值)
    00.0731.20.88.090.5
    10.0731.20.88.090.5
    下载: 导出CSV

    表 2  优化后质子成像系统参数

    Table 2.  Parameters of proton imaging system after optimization.

    类型积分差值/%$d/{\rm{m}}$${D_{\rm{s}}}/{\rm{m}}$$l/{\rm{m}}$${G_{\rm{o} } }/({\rm{T} } \cdot { {\rm{m} }^{ - {\rm{1} } } })$${D_{\rm{t}}}/{\rm{m}}$
    理想1.20.88.090.500
    含边缘00.0731.2030.88.090.506
    10.0731.2080.88.090.516
    下载: 导出CSV

    表 3  准直器孔径参数

    Table 3.  Aperture parameters of the angle-cut collimator.

    截断角
    /mrad
    系统
    类型
    积分
    差值/%
    前端/cm后端/cm厚度/m材料
    xyxy
    2.0理想1.491.700.610.610.5W
    含边缘优化前1.491.700.610.61
    01.491.700.610.61
    11.481.700.610.61
    3.5理想1.872.241.071.07
    含边缘优化前1.872.241.071.07
    01.872.241.071.07
    11.872.241.081.07
    下载: 导出CSV
  • [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason AJ, Barlow D B, Blind B, et al. 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [5]

    Rigg P A, Schwartz C L, Hixson R S, et al. 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    MorrisC L, AblesE, Alrick KR, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Matthew S. F, Jason A, Camilo E, et al. 2016 Proc. of SPIE 9783 97831X

    [8]

    Matthew S. F, Jason A, Malcolm A, et al. 2017 Rev. Sci. Instrum. 88 013709Google Scholar

    [9]

    AntipovaYM, AfoninaA G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [10]

    GolubevA A, DemidovVS, DemidovaE V, et al. 2010 Tech. Phys. Lett. 36 177Google Scholar

    [11]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust., Explos. Shock Waves 47 627Google Scholar

    [12]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [13]

    Yang J J, Zhen X, Wei S M, et al. 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [14]

    Sheng L N, Zhao Y T, Yang G J, et al. 2014 Laser Part. Beams 32 651Google Scholar

    [15]

    Zhao Y, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 16 1

    [16]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [17]

    Wei T, Yang G J, Long J D, et al. 2013 Chin. Phys. C 37 068201Google Scholar

    [18]

    Zhou Z, Fang Y, Chen H, et al. 2019 Matter Radiat. Extremes 4 065402Google Scholar

    [19]

    Aufderheide M B, ParkH, Hartouni E P1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [20]

    Maksimov A V, Tyurin N E, Fedotov Y S 2014 Tech. Phys. 59 132

    [21]

    Morris C L, Brown E N, Agee C, et al. 2016 Exp. Mech. 56 111Google Scholar

    [22]

    Li Y D, Yang G J, Zhang X D, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 814 104Google Scholar

    [23]

    刘烈烽, 刘承俊, 章冠人 1991 强激光与粒子束 3 535

    Liu L F, Liu C J, Zhang G R, et al. 1991 High Power Laser Part. Beams 3 535

    [24]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Schott W, Springer K, Winter H J, et al. 1973 Nucl. Instrum. Methods 111 541Google Scholar

    [27]

    陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥 2020 物理学报 69 032901Google Scholar

    Chen F, Xu H B, Zheng N, Jia Q G, She R G, Li X El 2020 Acta Phys. Sin. 69 032901Google Scholar

  • [1] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [2] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构. 物理学报, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [3] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究. 物理学报, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [4] 陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥. 高能质子照相中基于角度准直器设计的理论研究. 物理学报, 2020, 69(3): 032901. doi: 10.7498/aps.69.20191691
    [5] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [6] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展. 物理学报, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [7] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究. 物理学报, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [8] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究. 物理学报, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [9] 袁志林, 杨睿, 杨柳, 宋丽丹, 孙莉萍, 马雨虹, 王猛, 陈定康, 郭金平, 唐丽红. 基于单准直透镜的阵列准直器研究. 物理学报, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [10] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [11] 滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤. 激光质子照相特性模拟研究. 物理学报, 2009, 58(3): 1635-1641. doi: 10.7498/aps.58.1635
    [12] 张宝武, 张文涛, 马 艳, 李同保. 大预准直狭缝的铬原子束一维多普勒激光准直. 物理学报, 2008, 57(9): 5485-5490. doi: 10.7498/aps.57.5485
    [13] 马 艳, 张宝武, 郑春兰, 马珊珊, 李佛生, 王占山, 李同保. 激光准直Cr原子束的实验研究. 物理学报, 2006, 55(8): 4086-4090. doi: 10.7498/aps.55.4086
    [14] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [15] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [16] 陆学善, 罗绶珉. 标定六角晶系及四方晶系粉末照相指数的解析计算方法及计算程序. 物理学报, 1981, 30(4): 520-525. doi: 10.7498/aps.30.520
    [17] 陆学善, 罗绶珉. 标定正交晶系粉末照相指数的计算方法及计算程序. 物理学报, 1981, 30(11): 1488-1497. doi: 10.7498/aps.30.1488
    [18] 郭常霖. X射线单色四重聚焦照相机单色器的衍射几何. 物理学报, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] 西门纪业. 磁透镜与偏转器的复合系统的电子光学性质和象差理论. 物理学报, 1977, 26(1): 34-53. doi: 10.7498/aps.26.34
    [20] 叶铭汉, 孙良方, 徐建铭, 金建中, 叶龙飞, 陈志诚, 陈鑑璞, 夏广昌, 余觉先, 李正武, 赵忠尧. 质子静电加速器. 物理学报, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
计量
  • 文章访问数:  4500
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-17
  • 修回日期:  2020-09-15
  • 上网日期:  2021-01-03
  • 刊出日期:  2021-01-20

/

返回文章
返回