搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米静态随机存储器质子单粒子多位翻转角度相关性研究

罗尹虹 张凤祁 郭红霞 郭晓强 赵雯 丁李利 王园明

引用本文:
Citation:

纳米静态随机存储器质子单粒子多位翻转角度相关性研究

罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明

Angular dependence of proton single event multiple-cell upsets in nanometer SRAM

Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming
PDF
导出引用
  • 器件特征尺寸的减小带来单粒子多位翻转的急剧增加, 对现有加固技术带来了极大挑战. 针对90 nm SRAM(static random access memory, 静态随机存储器)开展了中高能质子入射角度对单粒子多位翻转影响的试验研究, 结果表明随着质子能量的增加, 单粒子多位翻转百分比和多样性增加, 质子单粒子多位翻转角度效应与质子能量相关. 采用一种快速计算质子核反应引起单粒子多位翻转的截面积分算法, 以Geant4中Binary Cascade模型作为中高能质子核反应事件发生器, 从次级粒子的能量和角度分布出发, 揭示了质子与材料核反应产生的次级粒子中, LET(linear energy transfer)最大, 射程最长的粒子优先前向发射是引起单粒子多位翻转角度相关性的根本原因. 质子能量、临界电荷的大小是影响纳米SRAM器件质子多位翻转角度相关性的关键因素. 质子能量越小, 多位翻转截面角度增强效应越大; 临界电荷的增加将增强质子多位翻转角度效应.
    Single event multiple-cell upsets (MCU) increase sharply as the feature size of semiconductor devices shrinks. MCU poses a large challenge on present radiation hardening technology and modeling test technique. Experimental study of the influence of proton incidence angle on single event multiple-cell upsets in 90 nm static random access memory (SRAM) for middle and high energy proton is carried out. The result shows that MCU percentage and multiplicity increase with increasing proton energy, and the MCU topological pattern presents a certain track-orientation characteristic along the trajectories of the incidence ion when the incidence proton is tilted along the X-direction or Y-direction. Single event upset (SEU) cross section has no evident angular dependence. There is some difference in proton MCU cross section between normal incidence and tilt angle incidence only for 30 MeV proton. Angular effect of proton MCU is associated with proton energy. Due to the lower efficiency of Monte-Carlo method in calculating proton MCU, a fast calculation method for cross section, which aims at single event MCU induced by proton nuclear reaction, is adopted. The binary cascade model in Geant4 toolkit serves as event generators in middle on high proton nuclear reaction. In terms of double differential scattering cross section of secondary particle from proton-material spallation reaction, proton MCU cross section is calculated through integration over the entire space of memory cells array. Based on the distribution of secondary particles, those spallation products with the highest linear energy transfer (LET) and longest range are revealed to emit preferentially in the forward direction, which is the root cause why the angular effect of proton-induced MCU exists. The angular dependence of single event MCU in nanometer SRAM depends strongly on proton energy and critical charge. The higher the proton energy is, the wider the angular distribution of secondary particle is, the greater the energy and LET value of the lateral scattered secondary particle is; and so the angular enhancement effect in MCU cross section for lower energy protons is greater than the higher energy protons. MCU cross section is more isotropic with the increase of the proton energy. Angular effect in MCU cross section becomes stronger with the increase of the critical charge for the same energy proton.
      通信作者: 罗尹虹, luoyinhong@nint.ac.cn
    • 基金项目: 国家科技重大专项(批准号: 2014ZX01022-301)资助的课题.
      Corresponding author: Luo Yin-Hong, luoyinhong@nint.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX01022-301).
    [1]

    Giot D, Roche P, Gasiot G, Harboe-Sorensen R 2007 IEEE Trans. Nucl. Sci. 54 904

    [2]

    Correas V, Saigné F, Sagnes B, Wrobel F, Boch J, Gasiot G, Roche P 2009 IEEE Trans. Nucl. Sci. 65 2050

    [3]

    Lawrence R K, Kelly A T 2008 IEEE Trans. Nucl. Sci. 55 3367

    [4]

    Giot D, Roche P, Gasiot G, Autran J L, Harboe-Sorensen R 2008 IEEE Trans. Nucl. Sci. 55 2048

    [5]

    Tipon A D, Pellish J A, Hutson J M, Baumann R, Deng X, Marshall A, Xapsos M A, Kim H S, Friendlich M R, Campola M J, Seidleck C M, Label K A, Mendenhall M H, Reed R A, Schrimpf R D, Weller R A, Black J D 2008 IEEE Trans. Nucl. Sci. 56 2880

    [6]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification NO. 25100

    [7]

    Koga R, Kolaskinski W A, Osborn J V, Elder J H, Chitty R 1988 IEEE Trans. Nucl. Sci. 35 1638

    [8]

    Reed R A, Marshall P W, Kim Hak S, McNulty P J, Fodness B, Jordan T M, Reedy R, Tabbert C, Liu M S T, Heikkila W, Buchner S, Ladbury R, LaBel K A 2002 IEEE Trans. Nucl. Sci. 49 3038

    [9]

    Buchner S, Campbell A, Reed R, Fodness B, Kuboyama S 2004 IEEE Trans. Nucl. Sci. 51 3270

    [10]

    Ikedade N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200

    [11]

    He C H, Yang H L, Geng B, Chen X H, Li G Z, Liu E K, Luo J S 2000 Nuclear Electronics & Detection Technology. 20 253 (in Chinese) [贺朝会, 杨海亮, 耿斌, 陈晓华, 李国政, 刘恩科, 罗晋生 2000 核电子学与探测技术 20 253]

    [12]

    He C H, Chen X H, Li G Z 2002 Chinese Journal of Computation Physics 19 367 (in Chinese) [贺朝会, 陈晓华, 李国政 2002 计算物理 19 367]

    [13]

    Wang Y M, Chen W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atomic Energy Science and Technology 44 1505 (in Chinese) [王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505]

    [14]

    Wang T Q 2003 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王同权 2003 博士学位论文(长沙: 国防科学技术大学)]

    [15]

    Folger G, Ivanchenko V, Wellisch J 2004 The European Physical Journal A-Hadrons and Nuclei 21 407

    [16]

    Clemens M A 2012 Ph. D. Dissertation(Nashville: Vanderbilt University)

    [17]

    Warren K M, Weller R A, Sierawski B D 2007 IEEE Trans. Nucl. Sci. 54 898

    [18]

    Artola L, Velazco R, Hubert G, Duzellier S, Nuns T, Guerard B, Peronnard P, Mansour W, Pancher F, Bezerra F 2011 IEEE Trans. Nucl. Sci. 58 2644

  • [1]

    Giot D, Roche P, Gasiot G, Harboe-Sorensen R 2007 IEEE Trans. Nucl. Sci. 54 904

    [2]

    Correas V, Saigné F, Sagnes B, Wrobel F, Boch J, Gasiot G, Roche P 2009 IEEE Trans. Nucl. Sci. 65 2050

    [3]

    Lawrence R K, Kelly A T 2008 IEEE Trans. Nucl. Sci. 55 3367

    [4]

    Giot D, Roche P, Gasiot G, Autran J L, Harboe-Sorensen R 2008 IEEE Trans. Nucl. Sci. 55 2048

    [5]

    Tipon A D, Pellish J A, Hutson J M, Baumann R, Deng X, Marshall A, Xapsos M A, Kim H S, Friendlich M R, Campola M J, Seidleck C M, Label K A, Mendenhall M H, Reed R A, Schrimpf R D, Weller R A, Black J D 2008 IEEE Trans. Nucl. Sci. 56 2880

    [6]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification NO. 25100

    [7]

    Koga R, Kolaskinski W A, Osborn J V, Elder J H, Chitty R 1988 IEEE Trans. Nucl. Sci. 35 1638

    [8]

    Reed R A, Marshall P W, Kim Hak S, McNulty P J, Fodness B, Jordan T M, Reedy R, Tabbert C, Liu M S T, Heikkila W, Buchner S, Ladbury R, LaBel K A 2002 IEEE Trans. Nucl. Sci. 49 3038

    [9]

    Buchner S, Campbell A, Reed R, Fodness B, Kuboyama S 2004 IEEE Trans. Nucl. Sci. 51 3270

    [10]

    Ikedade N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200

    [11]

    He C H, Yang H L, Geng B, Chen X H, Li G Z, Liu E K, Luo J S 2000 Nuclear Electronics & Detection Technology. 20 253 (in Chinese) [贺朝会, 杨海亮, 耿斌, 陈晓华, 李国政, 刘恩科, 罗晋生 2000 核电子学与探测技术 20 253]

    [12]

    He C H, Chen X H, Li G Z 2002 Chinese Journal of Computation Physics 19 367 (in Chinese) [贺朝会, 陈晓华, 李国政 2002 计算物理 19 367]

    [13]

    Wang Y M, Chen W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atomic Energy Science and Technology 44 1505 (in Chinese) [王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505]

    [14]

    Wang T Q 2003 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王同权 2003 博士学位论文(长沙: 国防科学技术大学)]

    [15]

    Folger G, Ivanchenko V, Wellisch J 2004 The European Physical Journal A-Hadrons and Nuclei 21 407

    [16]

    Clemens M A 2012 Ph. D. Dissertation(Nashville: Vanderbilt University)

    [17]

    Warren K M, Weller R A, Sierawski B D 2007 IEEE Trans. Nucl. Sci. 54 898

    [18]

    Artola L, Velazco R, Hubert G, Duzellier S, Nuns T, Guerard B, Peronnard P, Mansour W, Pancher F, Bezerra F 2011 IEEE Trans. Nucl. Sci. 58 2644

  • [1] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [5] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [6] 琚安安, 郭红霞, 张凤祁, 郭维新, 欧阳晓平, 魏佳男, 罗尹虹, 钟向丽, 李波, 秦丽. 铁电存储器中高能质子引发的单粒子功能中断效应实验研究. 物理学报, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [7] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析. 物理学报, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [8] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [9] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [11] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [12] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [13] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [14] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [15] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [17] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [18] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
    [20] 贺朝会, 耿 斌, 杨海亮, 陈晓华, 李国政, 王燕萍. 浮栅ROM器件辐射效应机理分析. 物理学报, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
计量
  • 文章访问数:  5860
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-11-05

/

返回文章
返回