搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子入射AlxGa1–xN 材料的位移损伤模拟

何欢 白雨蓉 田赏 刘方 臧航 柳文波 李培 贺朝会

引用本文:
Citation:

质子入射AlxGa1–xN 材料的位移损伤模拟

何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会

Simulation of displacement damage induced by protons incident on AlxGa1–xN materials

He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui
PDF
HTML
导出引用
  • 氮化镓材料由于优良的电学特性以及耐辐照性能, 其与不同含量AlxGa1–xN 材料组成的电子器件, 有望应用于未来空间电子系统中. 然而目前关于氮化镓位移损伤机理研究多关注于氮化镓材料, 对于 AlxGa1–xN 材料位移损伤研究较少. 本文通过两体碰撞近似理论模拟了 10 keV—300 MeV 质子在不同 Al 元素含量的AlxGa1–xN 材料中的位移损伤机理. 结果表明质子在AlxGa1–xN 材料中产生的非电离能损随质子能量增大而下降, 当质子能量低于 40 MeV时, 非电离能损随着 Al 含量的增大而变大, 当质子能量升高时该趋势相反; 分析由质子导致的初级撞出原子以及非电离能量沉积, 发现不同AlxGa1–xN 材料初级撞出原子能谱虽然相似, 然而 Al 元素含量越高, 由弹性碰撞产生的自身初级撞出原子比例越高; 对于质子在不同深度造成的非电离能量沉积, 弹性碰撞导致的能量沉积在径迹末端最大, 而非弹性碰撞导致的能量沉积在径迹前端均匀分布, 径迹末端减小, 并且低能质子主要是通过弹性碰撞造成非电离能量沉积, 而高能质子恰好相反. 本研究揭示了不同 Al 元素含量的AlxGa1–xN 材料质子位移损伤机理, 为 GaN 器件在空间辐射环境下的应用提供参考依据.
    Gallium nitride materials, due to their excellent electrical properties and irradiation resistance, are expected to be used in future space electronics systems where electronic devices are composed of different amounts of AlxGa1–xN materials. However, most of their displacement damage studies currently focus on GaN materials, and less on AlxGa1–xN materials themselves. The mechanism of displacement damage induced by 10- keV- to-300- MeV protons incident on AlxGa1–xN materials with different Al content is investigated by binary collision approximation method. The results show that the non-ionization energy loss of AlxGa1–xN material decreases with proton energy increasing. When the proton energy is lower than 40 MeV, the non-ionization energy loss becomes larger with the increase of Al content, while the trend is reversed when the proton energy increases. Analyzing the primary knock-on atoms and non-ionizing energy deposition caused by protons, it is found that the primary knock-on atoms’ spectra of different AlxGa1–xN materials are similar, but the higher the content of Al, the higher the proportion of the self primary knock-on atoms generated by elastic collisions is. For the non-ionizing energy deposition produced by protons at different depths, the energy deposition due to elastic collisions is largest at the end of the trajectory, while the energy deposition due to inelastic collisions is uniformly distributed in the front of the trajectory but decreases at the end of the trajectory. This study provides a good insight into the applications of GaN materials and devices in space radiation environment.
  • 图 1  位移损伤模型 (a) 薄靶近似模型; (b) 无限厚靶模型

    Fig. 1.  Displacement damage models: (a) Thin target approximation model; (b) infinite thick target model.

    图 2  不同能量质子在 GaN材料中产生的 NIEL大小, 与文献[22]值比较

    Fig. 2.  The values of NIEL in GaN material induced by protons with different energies, compared with values from Ref. [22].

    图 3  不同能量质子在AlxGa1–xN材料中产生的 NIEL大小

    Fig. 3.  The values of NIEL in AlxGa1–xN materials induced by protons with different energies.

    图 4  不同能量质子在 GaN材料中产生的 PKA 信息 (a) PKA总能谱; (b) 不同类型 PKA占比

    Fig. 4.  PKA information induced by protons with different energies in GaN material: (a) Overall PKA energy spectra; (b) fraction of different types of PKA.

    图 5  不同能量质子在AlxGa1–xN材料中产生弹性碰撞事件的占比

    Fig. 5.  The fraction of elastic collision events in AlxGa1–xN materials induced by protons with different energies.

    图 6  不同能量质子在AlxGa1–xN材料中沉积的Tdam随深度分布 (a) 150 keV; (b) 10 MeV; (c) 50 MeV; (d) 200 MeV

    Fig. 6.  Distribution of deposited Tdam with depth in AlxGa1–xN materials irradiated by protons with different energies: (a) 150 keV; (b) 10 MeV; (c) 50 MeV; (d) 200 MeV.

    图 7  (a) 150 keV, (b) 10 MeV, (c) 50 MeV, (d) 200 MeV质子在 GaN 材料中沉积的 Tdam (红色) 以及产生的PKA 数目 (蓝色) 随深度分布, 其中实线为弹性碰撞事件, 虚线为非弹性碰撞事件

    Fig. 7.  Distribution of deposited Tdam (Red) and produced PKAs (Blue) with depth in AlxGa1–xN mate rials irradiated by protons of (a) 150 keV, (b )10 MeV, (c) 50 MeV, (d) 200 MeV. The solid lines and the dashed lines correspond to elastic and inelastic collision events.

  • [1]

    郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 10 874

    Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 10 874

    [2]

    Zhang Y, Dadgar A, Palacios T 2018 J. Phys. D: Appl. Phys 51 273001

    [3]

    Pearton S, Ren F, Patrick E, Law M, Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35

    [4]

    Richard Y, Guzmann D, Smith D 2014 The 4S Symposium Majorca, Spain, May 26–30, 2014 p20141

    [5]

    Valenta V, Loughnane G, Espana C, Latti J, Barnes A, Roux J P, del Rio O, Rubio-Cidre G, Ramirez-Torres M, Serru V, Caille L 2022 17th European Microwave Integrated Circuits Conference (EuMIC) Milan, Italy, September 26–27, 2022 p41

    [6]

    陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 10 978

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 10 978

    [7]

    Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar

    [8]

    Zhu T, Zheng X F, Wang J, Wang M S, Chen K, Wang X H, Du M, Ma P J, Zhang H, Lv L, Cao Y R, Ma X H, Hao Y, 2021 IEEE T. Nucl. Sci. 68 2616Google Scholar

    [9]

    Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P, Lee C 2015 IEEE T. Nucl. Sci. 62 2423Google Scholar

    [10]

    He H, Liao W L, Wang Y Z, Liu W B, Zang H, He C H 2021 Comput. Mater. Sci. 196 110554Google Scholar

    [11]

    Lo C, Chang C, Chu B, Kim H Y, Kim J, Cullen D A, Zhou L, Smith D, Pearton S, Dabiran A, Ren F 2010 J. Vac. Sci. Technol. B 28 L47Google Scholar

    [12]

    Lü L, Ma J G, Cao Y R, Zhang J C, Zhang W, Li L, Xu S R, Ma X H, Ren X T, Hao Y 2011 Microelectron. Reliab. 51 2168Google Scholar

    [13]

    Lyons J L, Wickramaratne D, Van de Walle C G 2021 J. Appl. Phys. 129 111101Google Scholar

    [14]

    Wan P F, Li W Q, Xu X D, Wei Y D, Jiang H, Yang J Q, Shao G J, Lin G, Peng C, Zhang Z G, Li X J 2022 Appl. Phys. Lett. 121 092102Google Scholar

    [15]

    Wang Y Z, Zheng X F, Zhu T, Yue S Z, Pan A L, Xu S R, Li P X, Ma X H, Zhang J C, Guo L X, Hao Y 2023 Appl. Phys. Lett. 122 143501Google Scholar

    [16]

    Weaver B, Martin P, Boos J, Cress C 2012 IEEE T. Nucl. Sci. 59 3077Google Scholar

    [17]

    Zhang Z, Arehart A R, Cinkilic E, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Speck J S, Ringel S A 2013 Appl. Phys. Lett. 103 042102Google Scholar

    [18]

    He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar

    [19]

    Akkerman A, Barak J, Chadwick M, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [20]

    Akkerman A, Barak J, Murat M 2020 IEEE T. Nucl. Sci. 67 1813Google Scholar

    [21]

    Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar

    [22]

    Khanna S M, Estan D, Erhardt L S, Houdayer A, Carlone C, Ionascut- Nedelcescu A, Messenger S R, Walters R J, Summers G P, Warner J H, Jun I 2004 IEEE T. Nucl. Sci. 51 2729Google Scholar

    [23]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 T. Trans. Nucl. Sci. 70 1885Google Scholar

    [24]

    Nord J, Nordlund K, Keinonen J 2003 Phys. Rev. B 68 184104Google Scholar

    [25]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 024212Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 024212Google Scholar

    [26]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [27]

    Chen N J, Rasch E, Huang D H, Heller E R, Gao F 2018 IEEE T. Nucl. Sci. 65 1108Google Scholar

    [28]

    Keum D, Kim H 2018 ECS J. Solid State Sci. Technol 7 Q159Google Scholar

    [29]

    Hayes M, Auret F, Wu L, Meyer W, Nel J, Legodi M 2003 Physica B 340 421

    [30]

    Jun I, Xapsos M A, Burke E A 2004 IEEE T. Nucl. Sci. 51 3207Google Scholar

    [31]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE T. Nucl. Sci. 50 1924Google Scholar

    [32]

    Lindhard J, Nielsen V, Scharff M, Thomsen P 1963 Mat. -fys. Medd. K. Danske Vidensk. Selsk. 33 1

    [33]

    Robinson M T 1994 J. Nucl. Mater. 216 1Google Scholar

    [34]

    Akkerman A, Barak J 2006 IEEE T. Nucl. Sci. 53 3667Google Scholar

    [35]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE T. Nucl. Sci. 53 270Google Scholar

    [36]

    Agostinelli S, Allison J, Amako K a, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G 2003 Nucl. Instrum. Methods Phys. Res. A 506 250Google Scholar

    [37]

    Weller R A, Mendenhall M H, Fleetwood D M 2004 IEEE T. Nucl. Sci. 51 3669Google Scholar

    [38]

    Mendenhall M H, Weller R A 2005 Nucl. Instrum. Methods Phys. Res. B 227 420Google Scholar

    [39]

    Hu X, Karmarkar A P, Jun B, Fleetwood D M, Schrimpf R D, Geil R D, Weller R A, White B D, Bataiev M, Brillson L J, Mishra U K 2003 IEEE T. Nucl. Sci. 50 1791Google Scholar

    [40]

    Xiao H, Gao F, Zu X T, Weber W J 2009 J. Appl. Phys. 105 123527Google Scholar

    [41]

    He H, He C H, Zhang J X, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar

    [42]

    Xi J, Liu B, Zhang Y, Weber W J 2018 J. Appl. Phys. 123 045904Google Scholar

    [43]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2016 IEEE T. Nucl. Sci. 64 1 pp. 133

    [44]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2016 IEEE T. Nucl. Sci. 64 141

    [45]

    Stoller R E 2000 J. Nucl. Mater. 276 22Google Scholar

    [46]

    Rayaprolu R, Möller S, Linsmeier C, Spellerberg S 2016 Nucl. Mater. Energy 9 29Google Scholar

    [47]

    Wirth B D, Odette G R, Marian J, Ventelon L, Young-Vandersall J A, Zepeda-Ruiz L A 2004 J. Nucl. Mater. 329 103

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, doi: 10.7498/aps.73.20231477
    [2] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, doi: 10.7498/aps.73.20231499
    [3] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, doi: 10.7498/aps.72.20230976
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, doi: 10.7498/aps.71.20211722
    [5] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, doi: 10.7498/aps.70.20210303
    [6] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, doi: 10.7498/aps.69.20190878
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, doi: 10.7498/aps.69.20200714
    [8] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析. 物理学报, doi: 10.7498/aps.67.20171701
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, doi: 10.7498/aps.67.20181095
    [10] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, doi: 10.7498/aps.65.027901
    [11] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, doi: 10.7498/aps.65.084209
    [12] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, doi: 10.7498/aps.64.178501
    [13] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究. 物理学报, doi: 10.7498/aps.64.216103
    [14] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, doi: 10.7498/aps.64.024220
    [15] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, doi: 10.7498/aps.63.066102
    [16] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, doi: 10.7498/aps.62.094219
    [17] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, doi: 10.7498/aps.62.117103
    [18] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, doi: 10.7498/aps.61.214211
    [19] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, doi: 10.7498/aps.59.4136
    [20] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, doi: 10.7498/aps.55.3546
计量
  • 文章访问数:  346
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-11-16
  • 上网日期:  2023-11-30

/

返回文章
返回