搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运

石永强 孔维龙 吴仁存 张文轩 谭磊

引用本文:
Citation:

耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运

石永强, 孔维龙, 吴仁存, 张文轩, 谭磊

Single photon transport by a quantized cavity field driven cascade-type three-level atom in a dissipative coupled cavity array

Shi Yong-Qiang, Kong Wei-Long, Wu Ren-Cun, Zhang Wen-Xuan, Tan Lei
PDF
导出引用
  • 基于准玻色方法,解析求解了环境作用下一维耦合腔阵列耦合一个量子化腔场驱动的级联型三能级原子系统中单光子输运的反射率、透射率和相应等效势的表达式,并详细讨论了耗散情况下控制参数对单光子输运的影响.研究结果表明:在实验范围内选择合适的参数时,原子耗散和腔场耗散都能使反射率峰值降低,但原子耗散影响反射率较大,同等参数取值条件下反射率峰值减小更为显著;更为重要的是对于在环境作用下的体系,通过调节原子和腔场之间的失谐以及驱动量子化腔场的光子数仍可使单光子接近达到全反射.
    In this paper, a new kind of quasi-boson method is used to eliminate the coordinates of the environment and redescribe the dissipative system by using an effective Hamiltonian; the localized mode and the interaction between cavities can be renormalized. Based on the quasi-boson approach, the single photon transport in one-dimensional coupled cavity array, with a driven cascade-type three-level atom embedded in one of the cavity, is investigated under the influence of the environment. The single-photon transmission and the reflection amplitudes are obtained analytically. And the additional effective potential induced by the interaction between the atom and the cavity is also derived. The effects of the controlling parameters on the reflection and transmission amplitudes are discussed with considering the dissipation. It is shown that the decay rates of the atoms and the cavity both reduce the reflection spectrum. But the dissipation of the atom has a significant influence on the reflection amplitude compared with the cavity decay under the same conditions. Due to the irreversible loss of energy, the photon number is non-conservative. Furthermore, the single-photon can be almost reflected by the three-level atom in the dissipative case when one adjusts the detuning and photon number of the quantized cavity field. The investigation will be of benefit to the realization of photon transport in a real experiment, which is also helpful for manipulating the photons in quantum information and quantum simulation.
      通信作者: 谭磊, tanlei@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274148)资助的课题.
      Corresponding author: Tan Lei, tanlei@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274148).
    [1]

    Raimond J M, Brune M, Haroche S 2001Rev.Mod.Phys. 73 565

    [2]

    Mabuchi H, Doherty A C 2002Science 298 1372

    [3]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004Nature 431 162

    [4]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005Nature 436 87

    [5]

    Xia F, Sekaric L, Vlasov Y 2007Nat.Photonics 1 65

    [6]

    Notomi M, Kuramochi E, Tanabe T 2008Nat.Photonics 2 741

    [7]

    Hartmann M J, Brandao F G S L, Plenio M B 2008Laser Photonics Rev. 2 527

    [8]

    Rosenblit M, Horak P, Helsby S, Folman R 2004Phys.Rev.A 70 053808

    [9]

    Bermel P, Rodriguez A, Johnson S G, Joannopoulos J D, Soljacic M 2006Phys.Rev.A 74 043818

    [10]

    Romero G, Garca-Ripoll J J, Solano E 2009Phys.Rev.Lett. 102 173602

    [11]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006Nature 443 671

    [12]

    Srinivasan K, Painter O 2007Nature 450 862

    [13]

    Rakher M T, Ma L, Slattery O, Tang X, Srinivasan K 2010Nat.Photonics 4 786

    [14]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008Phys.Rev.Lett. 101 100501

    [15]

    Gong Z R, Lan H, Zhou L, Sun C P 2008Phys.Rev.A 78 053806

    [16]

    Zhou L, Yang L P, Li Y, Sun C P 2013Phys.Rev.Lett. 111 103604

    [17]

    Lu J, Zhou L, Kuang L M, Nori F 2014Phys.Rev.A 89 013805

    [18]

    Yan W B, Fan H 2014Phys.Rev.A 90 053807

    [19]

    Diehl S, Micheli A, Kantian A, Kraus B, Bchler P H, Zoller P 2008Nat.Phys. 4 878

    [20]

    Gerace D, Treci H E, Imamolu A, Giovannetti V, Fazio R 2009Nat.Phys. 5 281

    [21]

    Karasik I R, Wiseman M H 2011Phys.Rev.Lett. 106 020406

    [22]

    Hur K L 2008Ann.Phys. 323 2208

    [23]

    Szymaska H M, Keeling J, Littlewood B P 2006Phys.Rev.Lett. 96 230602

    [24]

    Dalidovich D, Kennett P M 2009Phys.Rev.A 79 053611

    [25]

    Carusotto I, Gerace D, Tureci H E, DeLiberato S, Ciuti C, Imamolu A 2009Phys.Rev.Lett. 103 033601

    [26]

    Diehl S, Tomadin A, Micheli A, Fazio R, Zoller P 2010Phys.Rev.Lett. 105 015702

    [27]

    Schmidt S, Gerace D, Houck A A, Blatter G, Treci H E 2010Phys.Rev.B 82 100507

    [28]

    Tomadin A, Giovannetti V, Fazio R, Gerace D, Carusotto I, Treci H E, Imamolu A 2010Phys.Rev.A 81 061801

    [29]

    Hartmann J M 2010Phys.Rev.Lett. 104 113601

    [30]

    Morrison S, Parkins S A 2008Phys.Rev.Lett. 100 040403

    [31]

    Kiffner M, Hartmann J M 2010Phys.Rev.A 81 021806

    [32]

    Ferretti S, Andreani C L, Treci H E, Gerace D 2010Phys.Rev.A 82 013841

    [33]

    Han J Y, Chan H Y, Yi W, Daley J A, Diehl S, Zoller P, Duan M L 2009Phys.Rev.Lett. 103 070404

    [34]

    Knap M, Arrigoni E, Linden W, Cole H J 2011Phys.Rev.A 83 023821

    [35]

    Liu K, Tan L, Lv C H, Liu W M 2011Phys.Rev.A 83 063840

    [36]

    Tan L, Hai L 2012J.Phys.B:At.Mol.Opt.Phys. 45 035504

    [37]

    Hai L, Tan L, Feng J S, Bao J, Lv C H, Wang B 2013Eur.Phys.J.D 67 173

    [38]

    Cheng M T, Ma X S, Ding M T, Luo Y Q, Zhao G X 2012Phys.Rev.A 85 053840

    [39]

    Flgge S 1999Practical Quantum Mechanics(Berlin:Springer-Verlag) pp64-68

    [40]

    Sachiko K, Masashi B, Fumiaki S 2013J.Phys.B:At.Mol.Opt.Phys. 46 224004

    [41]

    Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T, Delsing P 2008Appl.Phys.Lett. 92 203501

    [42]

    Majumdar A, Rundquist A, Bajcsy M, Vuckovic J 2012Phys.Rev.B 86 045315

    [43]

    Liao J Q, Huang J F, Liu Y X, Kuang L M, Sun C P 2009Phys.Rev.A 80 014301

    [44]

    Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Schoelkopf R J 2007Nature 449 328

    [45]

    Kuramochi E, Notomi M, Mitsugi S, Shinya A, Tanabe T, Watanabe T 2006Appl.Phys.Lett. 88 041112

    [46]

    Noda S, Fujita M, Asano T 2007Nat.Photonics 1 449

  • [1]

    Raimond J M, Brune M, Haroche S 2001Rev.Mod.Phys. 73 565

    [2]

    Mabuchi H, Doherty A C 2002Science 298 1372

    [3]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004Nature 431 162

    [4]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005Nature 436 87

    [5]

    Xia F, Sekaric L, Vlasov Y 2007Nat.Photonics 1 65

    [6]

    Notomi M, Kuramochi E, Tanabe T 2008Nat.Photonics 2 741

    [7]

    Hartmann M J, Brandao F G S L, Plenio M B 2008Laser Photonics Rev. 2 527

    [8]

    Rosenblit M, Horak P, Helsby S, Folman R 2004Phys.Rev.A 70 053808

    [9]

    Bermel P, Rodriguez A, Johnson S G, Joannopoulos J D, Soljacic M 2006Phys.Rev.A 74 043818

    [10]

    Romero G, Garca-Ripoll J J, Solano E 2009Phys.Rev.Lett. 102 173602

    [11]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006Nature 443 671

    [12]

    Srinivasan K, Painter O 2007Nature 450 862

    [13]

    Rakher M T, Ma L, Slattery O, Tang X, Srinivasan K 2010Nat.Photonics 4 786

    [14]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008Phys.Rev.Lett. 101 100501

    [15]

    Gong Z R, Lan H, Zhou L, Sun C P 2008Phys.Rev.A 78 053806

    [16]

    Zhou L, Yang L P, Li Y, Sun C P 2013Phys.Rev.Lett. 111 103604

    [17]

    Lu J, Zhou L, Kuang L M, Nori F 2014Phys.Rev.A 89 013805

    [18]

    Yan W B, Fan H 2014Phys.Rev.A 90 053807

    [19]

    Diehl S, Micheli A, Kantian A, Kraus B, Bchler P H, Zoller P 2008Nat.Phys. 4 878

    [20]

    Gerace D, Treci H E, Imamolu A, Giovannetti V, Fazio R 2009Nat.Phys. 5 281

    [21]

    Karasik I R, Wiseman M H 2011Phys.Rev.Lett. 106 020406

    [22]

    Hur K L 2008Ann.Phys. 323 2208

    [23]

    Szymaska H M, Keeling J, Littlewood B P 2006Phys.Rev.Lett. 96 230602

    [24]

    Dalidovich D, Kennett P M 2009Phys.Rev.A 79 053611

    [25]

    Carusotto I, Gerace D, Tureci H E, DeLiberato S, Ciuti C, Imamolu A 2009Phys.Rev.Lett. 103 033601

    [26]

    Diehl S, Tomadin A, Micheli A, Fazio R, Zoller P 2010Phys.Rev.Lett. 105 015702

    [27]

    Schmidt S, Gerace D, Houck A A, Blatter G, Treci H E 2010Phys.Rev.B 82 100507

    [28]

    Tomadin A, Giovannetti V, Fazio R, Gerace D, Carusotto I, Treci H E, Imamolu A 2010Phys.Rev.A 81 061801

    [29]

    Hartmann J M 2010Phys.Rev.Lett. 104 113601

    [30]

    Morrison S, Parkins S A 2008Phys.Rev.Lett. 100 040403

    [31]

    Kiffner M, Hartmann J M 2010Phys.Rev.A 81 021806

    [32]

    Ferretti S, Andreani C L, Treci H E, Gerace D 2010Phys.Rev.A 82 013841

    [33]

    Han J Y, Chan H Y, Yi W, Daley J A, Diehl S, Zoller P, Duan M L 2009Phys.Rev.Lett. 103 070404

    [34]

    Knap M, Arrigoni E, Linden W, Cole H J 2011Phys.Rev.A 83 023821

    [35]

    Liu K, Tan L, Lv C H, Liu W M 2011Phys.Rev.A 83 063840

    [36]

    Tan L, Hai L 2012J.Phys.B:At.Mol.Opt.Phys. 45 035504

    [37]

    Hai L, Tan L, Feng J S, Bao J, Lv C H, Wang B 2013Eur.Phys.J.D 67 173

    [38]

    Cheng M T, Ma X S, Ding M T, Luo Y Q, Zhao G X 2012Phys.Rev.A 85 053840

    [39]

    Flgge S 1999Practical Quantum Mechanics(Berlin:Springer-Verlag) pp64-68

    [40]

    Sachiko K, Masashi B, Fumiaki S 2013J.Phys.B:At.Mol.Opt.Phys. 46 224004

    [41]

    Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T, Delsing P 2008Appl.Phys.Lett. 92 203501

    [42]

    Majumdar A, Rundquist A, Bajcsy M, Vuckovic J 2012Phys.Rev.B 86 045315

    [43]

    Liao J Q, Huang J F, Liu Y X, Kuang L M, Sun C P 2009Phys.Rev.A 80 014301

    [44]

    Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Schoelkopf R J 2007Nature 449 328

    [45]

    Kuramochi E, Notomi M, Mitsugi S, Shinya A, Tanabe T, Watanabe T 2006Appl.Phys.Lett. 88 041112

    [46]

    Noda S, Fujita M, Asano T 2007Nat.Photonics 1 449

  • [1] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [2] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合. 物理学报, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [3] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [4] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [5] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [6] 海莲, 张莎, 李维银, 谭磊. 耦合腔阵列与-型三能级原子非局域耦合系统中单光子的传输特性研究. 物理学报, 2017, 66(15): 154203. doi: 10.7498/aps.66.154203
    [7] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [8] 熊芳, 冯晓强, 谭磊. 双光子过程耗散耦合腔阵列中的量子相变. 物理学报, 2016, 65(4): 044205. doi: 10.7498/aps.65.044205
    [9] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [10] 鲍佳, 谭磊. 失谐对耗散耦合腔阵列体系超流-绝缘相变的影响. 物理学报, 2014, 63(8): 084201. doi: 10.7498/aps.63.084201
    [11] 刘妮. 激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变. 物理学报, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [12] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔. 物理学报, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [13] 袁志林, 杨睿, 杨柳, 宋丽丹, 孙莉萍, 马雨虹, 王猛, 陈定康, 郭金平, 唐丽红. 基于单准直透镜的阵列准直器研究. 物理学报, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [14] 袁都奇. 囚禁弱相互作用玻色气体的势场优化准则. 物理学报, 2011, 60(3): 030307. doi: 10.7498/aps.60.030307
    [15] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [17] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [18] 徐志君, 施建青, 林国成. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解. 物理学报, 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [19] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [20] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
计量
  • 文章访问数:  2700
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-29
  • 修回日期:  2016-12-13
  • 刊出日期:  2017-03-05

耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运

  • 1. 兰州大学理论物理研究所, 兰州 730000
  • 通信作者: 谭磊, tanlei@lzu.edu.cn
    基金项目: 国家自然科学基金(批准号:11274148)资助的课题.

摘要: 基于准玻色方法,解析求解了环境作用下一维耦合腔阵列耦合一个量子化腔场驱动的级联型三能级原子系统中单光子输运的反射率、透射率和相应等效势的表达式,并详细讨论了耗散情况下控制参数对单光子输运的影响.研究结果表明:在实验范围内选择合适的参数时,原子耗散和腔场耗散都能使反射率峰值降低,但原子耗散影响反射率较大,同等参数取值条件下反射率峰值减小更为显著;更为重要的是对于在环境作用下的体系,通过调节原子和腔场之间的失谐以及驱动量子化腔场的光子数仍可使单光子接近达到全反射.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回