搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器

令维军 夏涛 董忠 左银艳 李可 刘勍 路飞平 赵小龙 王勇刚

引用本文:
Citation:

基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器

令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚

Passively Q-switched mode-locked low threshold Tm, Ho: LLF laser with an single walled carbon nanotubes saturable absorber

Ling Wei-Jun, Xia Tao, Dong Zhong, Zuo Yin-Yan, Li Ke, Liu Qing, Lu Fei-Ping, Zhao Xiao-Long, Wang Yong-Gang
PDF
导出引用
  • 采用垂直生长法制作的单壁碳纳米管作为可饱和吸收体,结合特殊的低阈值谐振腔设计,首次在Tm,Ho:LiLuF4全固态激光器中实现了低阈值自启动被动调Q锁模运转.以波长可调的掺钛蓝宝石固体激光器作为抽运源,选用1.5%,3%和5%的输出耦合镜,获得了出光阈值低至52,59和62 mW的连续光输出.采用3%输出耦合镜,获得了阈值低至250 mW的稳定调Q锁模脉冲输出,调Q包络的脉宽为2 s,调Q包络下锁模脉冲重复频率178.6 MHz,最大输出功率154 mW,最大的单脉冲能量为0.86 nJ,调制深度接近100%.
    Employing single walled carbon nanotubes (SWCNT) grown by the vertical growth method as a saturable absorber for the initiation of the pulse generation, and designing a low threshold resonant cavity, we demonstrate a stable passively Q-switched mode-locked (QML) Tm, Ho:LiLuF4 solid-state laser with low threshold for the first time. With wavelength tunable Ti:sapphire solid laser operating at 785 nm as a pumping source, continuous-wave (CW) absorbed pump thresholds of 52, 59 and 62 mW are obtained by using 1.5%, 3% and 5% output coupled mirrors respectively. In this case, the maximum output powers are 645, 828 and 940 mW respectively, whose corresponding slope deficiencies are 31.02%, 39.16% and 43.78%, respectively. When the SWCNT-SAs is inserted in the cavity, the cavity loss is further increased, so the laser threshold is improved. Employing the 1.5% output mirror, a laser threshold is obtained to be as low as 85 mW, but the maximum laser output power is only 70 mW, corresponding slope efficiency is 3.42%; employing the 3% output coupling mirror, the laser threshold is obtained to be as low as 99 mW, the maximum output power is 154 mW, and the corresponding slope efficiency is 8.47%; employing the 5% output mirror, owing to the loss in the cavity being too large, the QML operation cannot be achieved. The output power of the 3% output mirror is twice higher than that of the 1.5% output mirror, but the laser threshold difference is only 14 mW. With a comprehensive analysis, we use the 3% output mirror. In this case, a stable QML operation with a threshold of 250 mW is obtained. When the absorption pump power is 1.85 W, the maximum output power is 154 mW with a typical Q-switched pulse envelope width of 300 s, which is corresponding to a 178.6 MHz of the mode-locked frequency. The modulation depth in Q-switching envelope is close to 100%. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we could assume the duration of the pulse to be approximately 1.25 times more than the rise time of the pulse. So the width of the mode locked pulse is estimated to be about 663 ps. The results show that the SWCNT is a promising SA for QML solid-state laser with the 2 m wavelength. In the later stage, we increase the pump power, optimize the quality of the SWCNT material, and compensate for the dispersion in the cavity. It is expected to achieve a stable continuous mode-locking operation, and obtain a femtosecond mode-locked ultrashort pulse output. The mode-locked mid-infrared pulses have a lot of potential applications such as ultrafast molecule spectroscopy, the generation of mid-IR pulse, laser radar, atmospheric environment monitoring, etc.
      通信作者: 令维军, wjlingts@sina.com;dz0212@foxmail.com ; 董忠, wjlingts@sina.com;dz0212@foxmail.com
    • 基金项目: 国家自然科学基金(批准号:61465012,61564008,11774257,61461046,61665010,61661046)资助的课题.
      Corresponding author: Ling Wei-Jun, wjlingts@sina.com;dz0212@foxmail.com ; Dong Zhong, wjlingts@sina.com;dz0212@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61465012, 61564008, 11774257, 61461046, 61665010, 61661046).
    [1]

    Polder K D, Bruce S 2012 Dermatol. Surg. 38 199

    [2]

    Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098

    [3]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027

    [4]

    Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361

    [6]

    Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131

    [7]

    Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839

    [8]

    Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51

    [9]

    Rotermund F 2012 Quantum. Electron. 42 663

    [10]

    Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284

    [11]

    Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835

    [12]

    Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3

    [13]

    Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704

    [14]

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]

    [15]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [16]

    Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489

    [17]

    Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037

    [18]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [19]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761

  • [1]

    Polder K D, Bruce S 2012 Dermatol. Surg. 38 199

    [2]

    Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098

    [3]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027

    [4]

    Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361

    [6]

    Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131

    [7]

    Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839

    [8]

    Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51

    [9]

    Rotermund F 2012 Quantum. Electron. 42 663

    [10]

    Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284

    [11]

    Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835

    [12]

    Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3

    [13]

    Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704

    [14]

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]

    [15]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [16]

    Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489

    [17]

    Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037

    [18]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [19]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761

  • [1] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究. 物理学报, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [2] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [3] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [4] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器. 物理学报, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [5] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [6] 乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝. Tm,Ho双掺调Q激光系统理论与实验研究. 物理学报, 2014, 63(21): 214205. doi: 10.7498/aps.63.214205
    [7] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [8] 张俊, 谭平恒, 赵伟杰. 利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量. 物理学报, 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [9] 林志锋, 张云山, 高春清, 高明伟. LD抽运Cr,Tm,Ho∶YAG微片激光器单纵模运转特性的研究. 物理学报, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [10] 张新陆, 王月珠, 李立, 鞠有伦, 姜波. 端面抽运Tm,Ho:YLF激光器双稳特性的理论分析与实验研究. 物理学报, 2009, 58(2): 964-969. doi: 10.7498/aps.58.964
    [11] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [12] 张新陆, 王月珠, 李 立, 鞠有伦. 激光二极管端面抽运Tm,Ho:YLF激光器双稳特性研究. 物理学报, 2008, 57(3): 1699-1703. doi: 10.7498/aps.57.1699
    [13] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [14] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [16] 张新陆, 王月珠, 史洪峰. 激光二极管端面抽运室温Tm,Ho:YLF连续固体激光器. 物理学报, 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [17] 令维军, 魏志义, 孙敬华, 王兆华, 田金荣, 贾玉磊, 王 鹏, 韩海年. 低阈值掺钛蓝宝石激光器实验研究. 物理学报, 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [18] 令维军, 郑加安, 贾玉磊, 魏志义. 低阈值飞秒钛宝石激光器的理论研究. 物理学报, 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [19] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [20] 张海燕, 陈可心, 朱燕娟, 陈易明, 何艳阳, 伍春燕, 王金华, 刘颂豪. CO2连续激光蒸发制备单壁碳纳米管及其Raman光谱的研究. 物理学报, 2002, 51(2): 444-448. doi: 10.7498/aps.51.444
计量
  • 文章访问数:  6791
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-28
  • 修回日期:  2017-10-16
  • 刊出日期:  2018-01-05

/

返回文章
返回