-
采用垂直生长法制作的单壁碳纳米管作为可饱和吸收体,结合特殊的低阈值谐振腔设计,首次在Tm,Ho:LiLuF4全固态激光器中实现了低阈值自启动被动调Q锁模运转.以波长可调的掺钛蓝宝石固体激光器作为抽运源,选用1.5%,3%和5%的输出耦合镜,获得了出光阈值低至52,59和62 mW的连续光输出.采用3%输出耦合镜,获得了阈值低至250 mW的稳定调Q锁模脉冲输出,调Q包络的脉宽为2 s,调Q包络下锁模脉冲重复频率178.6 MHz,最大输出功率154 mW,最大的单脉冲能量为0.86 nJ,调制深度接近100%.
-
关键词:
- Tm /
- Ho:LLF固体激光器 /
- 低阈值 /
- 单壁碳纳米管 /
- 调Q锁模
Employing single walled carbon nanotubes (SWCNT) grown by the vertical growth method as a saturable absorber for the initiation of the pulse generation, and designing a low threshold resonant cavity, we demonstrate a stable passively Q-switched mode-locked (QML) Tm, Ho:LiLuF4 solid-state laser with low threshold for the first time. With wavelength tunable Ti:sapphire solid laser operating at 785 nm as a pumping source, continuous-wave (CW) absorbed pump thresholds of 52, 59 and 62 mW are obtained by using 1.5%, 3% and 5% output coupled mirrors respectively. In this case, the maximum output powers are 645, 828 and 940 mW respectively, whose corresponding slope deficiencies are 31.02%, 39.16% and 43.78%, respectively. When the SWCNT-SAs is inserted in the cavity, the cavity loss is further increased, so the laser threshold is improved. Employing the 1.5% output mirror, a laser threshold is obtained to be as low as 85 mW, but the maximum laser output power is only 70 mW, corresponding slope efficiency is 3.42%; employing the 3% output coupling mirror, the laser threshold is obtained to be as low as 99 mW, the maximum output power is 154 mW, and the corresponding slope efficiency is 8.47%; employing the 5% output mirror, owing to the loss in the cavity being too large, the QML operation cannot be achieved. The output power of the 3% output mirror is twice higher than that of the 1.5% output mirror, but the laser threshold difference is only 14 mW. With a comprehensive analysis, we use the 3% output mirror. In this case, a stable QML operation with a threshold of 250 mW is obtained. When the absorption pump power is 1.85 W, the maximum output power is 154 mW with a typical Q-switched pulse envelope width of 300 s, which is corresponding to a 178.6 MHz of the mode-locked frequency. The modulation depth in Q-switching envelope is close to 100%. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we could assume the duration of the pulse to be approximately 1.25 times more than the rise time of the pulse. So the width of the mode locked pulse is estimated to be about 663 ps. The results show that the SWCNT is a promising SA for QML solid-state laser with the 2 m wavelength. In the later stage, we increase the pump power, optimize the quality of the SWCNT material, and compensate for the dispersion in the cavity. It is expected to achieve a stable continuous mode-locking operation, and obtain a femtosecond mode-locked ultrashort pulse output. The mode-locked mid-infrared pulses have a lot of potential applications such as ultrafast molecule spectroscopy, the generation of mid-IR pulse, laser radar, atmospheric environment monitoring, etc.-
Keywords:
- Tm /
- Ho:LLF laser /
- low threshold /
- single walled carbon nanotubes /
- Q-switched mode-locking
[1] Polder K D, Bruce S 2012 Dermatol. Surg. 38 199
[2] Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098
[3] Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027
[4] Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356
[5] Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361
[6] Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131
[7] Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839
[8] Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51
[9] Rotermund F 2012 Quantum. Electron. 42 663
[10] Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284
[11] Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835
[12] Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3
[13] Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704
[14] Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]
[15] Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629
[16] Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489
[17] Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037
[18] Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]
[19] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761
-
[1] Polder K D, Bruce S 2012 Dermatol. Surg. 38 199
[2] Browell E V, Spiers G D, Jacob J, Christensen L E, Phillips M W, Menzies R T 2011 Appl. Opt. 50 2098
[3] Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A 2010 Opt. Lett. 35 3027
[4] Kong L C, Qin Z P, Xie G Q, Xu X D, Xu J, Yuan P, Qian L 2015 J. Opt. Lett.. 40 356
[5] Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Hrknen A, Guina M, Steinmeyer G, Mateos X, Veronesi S, Tonelli M, Li J, Pan Y, Guo J, Griebner U 2015 Opt. Express 23 1361
[6] Wang Y C, Xie G Q, Xu X D, Di J Q, Qin Z P, Suomalainen S, Guina M, Hrknen A, Agnesi A, Griebner U, Mateos X, Loiko P, Petrov V 2016 Opt. Mater. Express 6 131
[7] Luan C, Yang K, Zhao J, Zhao S, Li T, Zhang H, He J, Song L, Dekorsy T, Guina M, Zheng L 2017 Opt. Lett. 42 839
[8] Set S Y, Yaguchi H, Tanaka Y, Jablonski M 2004 J. Lightwave Technol. 22 51
[9] Rotermund F 2012 Quantum. Electron. 42 663
[10] Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J, Hsieh W F 2011 Opt. Lett. 36 1284
[11] Liu Y, Wang Y, Liu J, Liu C 2011 Appl. Phys.. 104 835
[12] Cho W B, Yim J H, Sun Y C, Lee S, Rotermund F, Schmidt A, Petrov V, Steinmeyer G, Griebner U, Mateos X, Pujol M C, Carvajal J J, Aguilo M, Diaz F 2010 Sources and Related Photonic Devices (OSA Technical Digest Series (CD)) pATuA3 (in America). https://doi.org/10.1364/ASSP.2010.ATuA3
[13] Schmidt A, Choi S 2012 Appl. Phys. Express 5 2704
[14] Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207(in Chinese) [令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207]
[15] Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629
[16] Read K, Blonigen F, Riccelli N, Murnane M, Kapteyn H 1996 Opt. Lett. 21 489
[17] Kowalevicz A M, Schibli T R, Krtner F X, Fujimoto J G 2002 Opt. Lett. 27 2037
[18] Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619(in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]
[19] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H 2010 Laser Phys. 20 761
计量
- 文章访问数: 6628
- PDF下载量: 183
- 被引次数: 0