搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高斯光束抽运调Q固体激光器仿真模型研究

程秋虎 王石语 过振 蔡德芳 李兵斌

引用本文:
Citation:

超高斯光束抽运调Q固体激光器仿真模型研究

程秋虎, 王石语, 过振, 蔡德芳, 李兵斌

Simulation model of super Gaussian beam pumped Q-switched solid-state laser

Cheng Qiu-Hu, Wang Shi-Yu, Guo Zhen, Cai De-Fang, Li Bing-Bin
PDF
导出引用
  • 仿真计算一直是研究激光器的重要手段,而激光理论是仿真计算的基础.虽然半经典激光理论能够精确地描述激光的产生过程,但是其复杂性导致仿真需要庞大的计算资源和计算时间.为了能够更加高效地对激光器进行仿真,提出了一种调Q固体激光器的仿真模型.基于此模型,研究了影响主动调Q激光产生过程的因素.这些因素包括抽运功率、抽运光分布和模式竞争.仿真计算结果与对照实验测量数据相符合,说明了模型的有效性.
    Computer simulation is always an important means for studying laser, while laser theory is the basis of simulation. Although the semi-classical laser theory can accurately describe the generation process of laser, its complexity leads to a need of huge resources and time for computation. However, in particular cases, the influence of some factors on the laser system can be neglected. If a simpler model is employed to describe the laser system, the time of simulation can be shortened significantly. In order to simulate the laser system more efficiently, a simulation model of Q-switched solid-state laser is proposed in this paper. In this model, the time-domain function of Q switch is introduced, which represents the modulation of Q switch loss over time. Because the cross section of the Nd:YAG rod is circularly shaped, the resonator eigenmodes are assumed to be a Laguerre-Gaussian beam for simplicity. Then, any other laser beam can be formed by superposition of the eigenmodes of the resonator. These series of resonator eigenmodes are coupled with the rate equations of laser crystals. Finally, the distribution of pump light field inside the laser crystal is approximated as super Gaussian distribution. Based on this physical model, the influence of pump power and pump light field distribution on the output beam of multimode Q-switched solid-state laser is investigated. The simulation results are in good agreement with the experimental data, which explains the validity of the proposed model. For instance, with the increase of pump power, the output power of the laser increases, but the overall slope efficiency decreases. This is because the diffraction loss m,n of the lower order mode is less than the diffraction loss of higher order mode. When the pumping power increases, the higher order mode that starts to oscillate has lower utilization efficiency of pump energy. Therefore, the overall slope efficiency of the laser is reduced. In order to analyze the mode competition in the multimode Q-switched solid-state laser more comprehensively, the processes of laser pulse generation, relaxation oscillation and continuous oscillation are calculated as one full cycle. The laws of pulse power and beam quality factor versus time are obtained. For example, the maximum instantaneous output power of the relaxation oscillation is about 30 times the steady continuous output power. This law has a certain reference value when analyzing the damage threshold of laser optical element. In the pulse generation stage, the beam quality factor is close to 1, which explains the fact that the pulse field composition is nearly the fundamental mode of the laser. In the relaxation oscillation, the value of the beam quality factor changes irregularly with time, because mode competition is in a non-equilibrium state at this time. When stable continuous oscillation occurs, the mode competition achieves dynamic equilibrium, which means that the proportion of each mode is no longer changed in the output light field.
      通信作者: 程秋虎, chengqiouhu@126.com
    • 基金项目: 国防预研究基金(批准号:9140A020105)资助的课题.
      Corresponding author: Cheng Qiu-Hu, chengqiouhu@126.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 9140A020105).
    [1]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese)[姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣2014物理学报 63 184201]

    [2]

    Wang X F, Wu Z M, Xia G Q 2016 Acta Phys. Sin. 65 024204(in Chinese)[王小发, 吴正茂, 夏光琼2016物理学报 65 024204]

    [3]

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203(in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅2015物理学报 64 014203]

    [4]

    Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201(in Chinese)[朱守深, 张书练, 刘维新, 牛海莎2014物理学报 63 064201]

    [5]

    Hou L, Han H N, Zhang L, Zhang J W, Li D H, Wei Z Y 2015 Acta Phys. Sin. 64 134205(in Chinese)[侯磊, 韩海年, 张龙, 张金伟, 李德华, 魏志义2015物理学报 64 134205]

    [6]

    Sun Q, Yang Y, Deng Y Q, Meng F, Zhao K 2016 Acta Phys. Sin. 65 150601(in Chinese)[孙青, 杨奕, 邓玉强, 孟飞, 赵昆2016物理学报 65 150601]

    [7]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206(in Chinese)[窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015物理学报 64 064206]

    [8]

    Ge L, Chong Y, Stone A D 2010 Phys. Rev. A 82 063824

    [9]

    Cerjan A, Chong Y D, Stone A D 2015 Opt. Express 23 6455

    [10]

    Pick A, Cerjan A, Liu D, Rodriguez A W, Stone A D, Chong Y D, Johnson S G 2015 Phys. Rev. A 91 063806

    [11]

    Cerjan A, Chong Y, Ge L, Stone A D 2012 Opt. Express 20 474

    [12]

    Treci H E, Ge L, Rotter S, Stone A D 2008 Science 320 643

    [13]

    Wohlmuth M, Pflaum C, Altmann K, Paster M, Hahn C 2009 Opt. Express 17 17303

    [14]

    McCumber D E 1965 Bell Sys. Tech. J. 44 333

  • [1]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese)[姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣2014物理学报 63 184201]

    [2]

    Wang X F, Wu Z M, Xia G Q 2016 Acta Phys. Sin. 65 024204(in Chinese)[王小发, 吴正茂, 夏光琼2016物理学报 65 024204]

    [3]

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203(in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅2015物理学报 64 014203]

    [4]

    Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201(in Chinese)[朱守深, 张书练, 刘维新, 牛海莎2014物理学报 63 064201]

    [5]

    Hou L, Han H N, Zhang L, Zhang J W, Li D H, Wei Z Y 2015 Acta Phys. Sin. 64 134205(in Chinese)[侯磊, 韩海年, 张龙, 张金伟, 李德华, 魏志义2015物理学报 64 134205]

    [6]

    Sun Q, Yang Y, Deng Y Q, Meng F, Zhao K 2016 Acta Phys. Sin. 65 150601(in Chinese)[孙青, 杨奕, 邓玉强, 孟飞, 赵昆2016物理学报 65 150601]

    [7]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206(in Chinese)[窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015物理学报 64 064206]

    [8]

    Ge L, Chong Y, Stone A D 2010 Phys. Rev. A 82 063824

    [9]

    Cerjan A, Chong Y D, Stone A D 2015 Opt. Express 23 6455

    [10]

    Pick A, Cerjan A, Liu D, Rodriguez A W, Stone A D, Chong Y D, Johnson S G 2015 Phys. Rev. A 91 063806

    [11]

    Cerjan A, Chong Y, Ge L, Stone A D 2012 Opt. Express 20 474

    [12]

    Treci H E, Ge L, Rotter S, Stone A D 2008 Science 320 643

    [13]

    Wohlmuth M, Pflaum C, Altmann K, Paster M, Hahn C 2009 Opt. Express 17 17303

    [14]

    McCumber D E 1965 Bell Sys. Tech. J. 44 333

  • [1] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [2] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制. 物理学报, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [3] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [4] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [5] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析. 物理学报, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [6] 游开明, 林燕玲, 王友文, 陈列尊, 戴志平, 陆世专. 基于Dini展开的高阶Hankel变换及其在光束传输中的应用. 物理学报, 2013, 62(14): 140203. doi: 10.7498/aps.62.140203
    [7] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究. 物理学报, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [8] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [9] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [10] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [11] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [12] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [13] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究. 物理学报, 2011, 60(2): 024214. doi: 10.7498/aps.60.024214
    [14] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究. 物理学报, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [15] 周国泉. 洛伦兹光束经光阑失调傍轴光学系统的传输. 物理学报, 2009, 58(9): 6185-6191. doi: 10.7498/aps.58.6185
    [16] 邓小玖, 汪国安, 刘彩霞, 赖传伟. 非傍轴矢量光束二阶矩的发散特性. 物理学报, 2009, 58(12): 8260-8263. doi: 10.7498/aps.58.8260
    [17] 周国泉. 洛伦兹光束的传输特性研究. 物理学报, 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [18] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [19] 周国泉. 非傍轴矢量高斯光束的传输. 物理学报, 2005, 54(4): 1572-1577. doi: 10.7498/aps.54.1572
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  5960
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-28
  • 修回日期:  2017-06-02
  • 刊出日期:  2017-09-05

/

返回文章
返回