搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零行列式策略在雪堆博弈中的演化

王俊芳 郭进利 刘瀚 沈爱忠

引用本文:
Citation:

零行列式策略在雪堆博弈中的演化

王俊芳, 郭进利, 刘瀚, 沈爱忠

Evolution of zero-determinant strategy in iterated snowdrift game

Wang Jun-Fang, Guo Jin-Li, Liu Han, Shen Ai-Zhong
PDF
导出引用
  • 零行列式策略不仅可以单方面设置对手收益,而且可以对双方的收益施加一个线性关系,从而达到敲诈对手的目的.本文针对零行列式策略博弈前期与稳态期的收益存在偏差,基于Markov链理论给出零行列式策略与全合作策略博弈的瞬态分布、瞬态收益及达到稳态所需时间.发现在小的敲诈因子下,敲诈者前期收益高于稳态期收益,敲诈因子较大时,情况截然相反,并且敲诈因子越大,越不利于双方合作,达到稳态也越慢.这为现实生活中频繁更新策略的博弈提供了一种计算实时收益的方法.此外针对敲诈策略与进化人的博弈,论证了双方均背叛状态下,进化人下次博弈时一定进化为全合作策略.通过对所有状态下策略更新过程仿真,发现进化人在四种情况下的进化速度有显著差异,并最终演化为全合作策略,表明零行列式策略是合作产生的催化剂.
    Zero-determinant strategy can set unilaterally or enforce a linear relationship on opponent's income, thereby achieving the purpose of blackmailing the opponent. So one can extort an unfair share from the opponent. Researchers often pay attention to the steady state and use the scores of the steady state in previous work. However, if the player changes his strategy frequently in daily game, the steady state cannot attain easily. It is necessary to attain the transient income if there is a difference in income between the previous state and the steady state. In addition, what will happen if evolutionary player encounters an extortioner? The evolutionary results cannot be proven, just using the simulations in previous work. Firstly, for the iterated game between extortioner and cooperator, we introduce the transient distribution, the transient income, and the arrival time to steady state by using the Markov chain theory. The results show that the extortioner's payoff in the previous state is higher than in the steady state when the extortion factor is small, and the results go into reverse when the extortion factor is large. Furthermore, the larger the extortion factor, the harder the cooperation will be. And the small extortion factor conduces to approaching the steady state earlier. The results provide a method to calculate the dynamic incomes of both sides and give us a time scale of reaching the steady state. Secondly, for the iterated game between extortioner and evolutionary player, we prove that the evolutionary player must evolve into a full cooperation strategy if he and his opponent are both defectors in the initial round. Then, supposing that the evolutionary speed is proportional to the gradient of his payoff, we simulate the evolutionary paths. It can be found that the evolutionary speeds are greatly different in four initial states. In particular, the evolutionary player changes his strategy into cooperation rapidly if he defects in the initial round. He also gradually evolves into a cooperator if he cooperates in the initial round. That is to say, the evolutionary process relates to his initial behavior, but the result is irrelevant to his behavior. It can be concluded that the zero-determinant strategy acts as a catalyst in promoting cooperation. Finally, we prove that the set of zero-determinant strategy and fully cooperation is not a Nash equilibrium.
      通信作者: 郭进利, phd5816@163.com
    • 基金项目: 国家自然科学基金(批准号:71571119)和国家自然科学基金青年科学基金(批准号:11501199)资助的课题.
      Corresponding author: Guo Jin-Li, phd5816@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71571119) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11501199).
    [1]

    Nash J F 1950 PNAS 36 48

    [2]

    Nash J F 1951 Ann. Math. 54 286

    [3]

    Smith J M, Price G R 1973 Nature 246 15

    [4]

    Nowak M, Sigmund K 1990 Acta Appl. Math. 20 247

    [5]

    Rodriguez I N, Neves A G M 2016 J. Math. Biol. 73 1665

    [6]

    Xiang H T, Liang S D 2015 Acta Phys. Sin. 64 018902(in Chinese)[向海涛, 梁世东2015物理学报 64 018902]

    [7]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97

    [8]

    Zhang J J, Ning H Y, Yin Z Y, Sun S W, Wang L, Sun J Q, Xia C Y 2012 Front. Phys. 7 366

    [9]

    Wu Y H, Li X, Zhang Z Z, Rong Z H 2013 Chaos Soliton. Fract. 56 91

    [10]

    Yang H X, Wang B H 2012 J. Univ. Shanghai Sci. Technol. 34 166(in Chinese)[杨涵新, 汪秉宏2012上海理工大学学报 34 166]

    [11]

    Xu B, Li M, Deng R P 2015 Physica A 424 168

    [12]

    Newth D, Cornforth D 2008 Artif. Life Robot. 12 329

    [13]

    Nowak M 1990 Theor. Popul. Biol. 38 93

    [14]

    Lorberbaum J 1994 J. Theor. Biol. 168 117

    [15]

    Imhof L A, Fudenberg D, Nowak M A 2007 J. Theor. Biol. 247 574

    [16]

    Yi S D, Baek S K, Choi J K 2017 J. Theor. Biol. 412 1

    [17]

    Press W H, Dyson F J 2012 PNAS 109 10409

    [18]

    Chen J, Zinger A 2014 J. Theor. Biol. 357 46

    [19]

    Adami C, Hintze A 2013 Nat. Commun. 4 2193

    [20]

    Stewart A J, Plotkin J B 2013 PNAS 110 15348

    [21]

    Hao D, Rong Z H, Zhou T 2014 Chin. Phys. B 23 078905

    [22]

    Szolnoki A, Perc M 2014 Phys. Rev. E 89 022804

    [23]

    Xu B, Lan Y N 2016 Chaos Soliton. Fract. 87 276

    [24]

    Rong Z H, Zhao Q, Wu Z X, Zhou T, Chi K T 2016 Eur. Phys. J. B 89 166

    [25]

    Li Y, Xu C, Liu J, Hui M P 2016 Int. J. Mod. Phys. C 27 306

    [26]

    Liu J, Li Y, Xu C, Hui P M 2015 Physica A 430 81

    [27]

    Hilbe C, Wu B, Traulsen A, Nowak M A 2014 PNAS 111 16425

    [28]

    Mcavoy A, Hauert C 2016 PNAS 113 3573

    [29]

    Pan L M, Hao D, Rong Z H, Zhou T 2015 Sci. Rep. 5 13096

    [30]

    Hao D, Rong Z H, Zhou T 2015 Phys. Rev. E 91 052803

  • [1]

    Nash J F 1950 PNAS 36 48

    [2]

    Nash J F 1951 Ann. Math. 54 286

    [3]

    Smith J M, Price G R 1973 Nature 246 15

    [4]

    Nowak M, Sigmund K 1990 Acta Appl. Math. 20 247

    [5]

    Rodriguez I N, Neves A G M 2016 J. Math. Biol. 73 1665

    [6]

    Xiang H T, Liang S D 2015 Acta Phys. Sin. 64 018902(in Chinese)[向海涛, 梁世东2015物理学报 64 018902]

    [7]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97

    [8]

    Zhang J J, Ning H Y, Yin Z Y, Sun S W, Wang L, Sun J Q, Xia C Y 2012 Front. Phys. 7 366

    [9]

    Wu Y H, Li X, Zhang Z Z, Rong Z H 2013 Chaos Soliton. Fract. 56 91

    [10]

    Yang H X, Wang B H 2012 J. Univ. Shanghai Sci. Technol. 34 166(in Chinese)[杨涵新, 汪秉宏2012上海理工大学学报 34 166]

    [11]

    Xu B, Li M, Deng R P 2015 Physica A 424 168

    [12]

    Newth D, Cornforth D 2008 Artif. Life Robot. 12 329

    [13]

    Nowak M 1990 Theor. Popul. Biol. 38 93

    [14]

    Lorberbaum J 1994 J. Theor. Biol. 168 117

    [15]

    Imhof L A, Fudenberg D, Nowak M A 2007 J. Theor. Biol. 247 574

    [16]

    Yi S D, Baek S K, Choi J K 2017 J. Theor. Biol. 412 1

    [17]

    Press W H, Dyson F J 2012 PNAS 109 10409

    [18]

    Chen J, Zinger A 2014 J. Theor. Biol. 357 46

    [19]

    Adami C, Hintze A 2013 Nat. Commun. 4 2193

    [20]

    Stewart A J, Plotkin J B 2013 PNAS 110 15348

    [21]

    Hao D, Rong Z H, Zhou T 2014 Chin. Phys. B 23 078905

    [22]

    Szolnoki A, Perc M 2014 Phys. Rev. E 89 022804

    [23]

    Xu B, Lan Y N 2016 Chaos Soliton. Fract. 87 276

    [24]

    Rong Z H, Zhao Q, Wu Z X, Zhou T, Chi K T 2016 Eur. Phys. J. B 89 166

    [25]

    Li Y, Xu C, Liu J, Hui M P 2016 Int. J. Mod. Phys. C 27 306

    [26]

    Liu J, Li Y, Xu C, Hui P M 2015 Physica A 430 81

    [27]

    Hilbe C, Wu B, Traulsen A, Nowak M A 2014 PNAS 111 16425

    [28]

    Mcavoy A, Hauert C 2016 PNAS 113 3573

    [29]

    Pan L M, Hao D, Rong Z H, Zhou T 2015 Sci. Rep. 5 13096

    [30]

    Hao D, Rong Z H, Zhou T 2015 Phys. Rev. E 91 052803

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] 陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚. Peltier系数的稳态法和瞬态法测量. 物理学报, 2023, 72(6): 068401. doi: 10.7498/aps.72.20222255
    [3] 成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山. 一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质. 物理学报, 2022, 71(1): 018501. doi: 10.7498/aps.71.20211171
    [4] 成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山. 一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211171
    [5] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响. 物理学报, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [6] 金学广, 寿国础, 胡怡红, 郭志刚. 面向成本-收益好的无标度耦合网络构建方法. 物理学报, 2016, 65(9): 098901. doi: 10.7498/aps.65.098901
    [7] 邓琪敏, 邹亚中, 包景东. 耦合系统的朗之万动力学产生法. 物理学报, 2014, 63(17): 170502. doi: 10.7498/aps.63.170502
    [8] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型. 物理学报, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [9] 上官丹骅, 吕艳, 包景东. 强束缚势中Lévy飞行的非Gibbs-Boltzmann统计. 物理学报, 2010, 59(11): 7607-7611. doi: 10.7498/aps.59.7607
    [10] 刘涛, 黄高明, 王雪松, 肖顺平. Weibull分布随机波的瞬态极化统计分析——相同形状参数情形. 物理学报, 2009, 58(5): 3140-3153. doi: 10.7498/aps.58.3140
    [11] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [12] 苗明川, 徐则达, 侯 钢, 樊尚春. 液晶稳态和瞬态多波混频与非线性光学特性. 物理学报, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [13] 赵柳. 拟Wrongsky行列式与扩张的KP及KdV可积序列. 物理学报, 1993, 42(11): 1719-1730. doi: 10.7498/aps.42.1719
    [14] 沈文达, 朱莳通. 稳态自洽密度分布的三参量解族. 物理学报, 1988, 37(5): 863-870. doi: 10.7498/aps.37.863
    [15] 关于存在多种亚稳态时的Townsend放电瞬态过程分析. 物理学报, 1988, 37(6): 996-1002. doi: 10.7498/aps.37.996
    [16] 张毓英, 李桂棠, 孙騊亨. 对汞亚稳态瞬态特性的研究. 物理学报, 1987, 36(9): 1154-1160. doi: 10.7498/aps.36.1154
    [17] 朱莳通, 沈文达. 双频激光辐照的等离子体中的稳态电场结构和密度分布. 物理学报, 1986, 35(7): 882-888. doi: 10.7498/aps.35.882
    [18] 苏子敏, 彭少麒. 用内光发射瞬态电流温度谱测定a-Si:H的隙态密度分布. 物理学报, 1986, 35(6): 731-740. doi: 10.7498/aps.35.731
    [19] 蔡金涛. 电网络行列式展开之简捷法. 物理学报, 1939, 3(2): 148-181. doi: 10.7498/aps.3.148
    [20] 丁燮林. 电网络行列式之性质及求其式分母分子之规则. 物理学报, 1935, 1(3): 18-40. doi: 10.7498/aps.1.18
计量
  • 文章访问数:  7120
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-05-30
  • 刊出日期:  2017-09-05

/

返回文章
返回