搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效率三倍频产生355 nm皮秒激光的实验研究

程梦尧 王兆华 何会军 王羡之 朱江峰 魏志义

引用本文:
Citation:

高效率三倍频产生355 nm皮秒激光的实验研究

程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义

Efficient third harmonic generation of 355 nm picosecond laser pulse

Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi
PDF
HTML
导出引用
  • 具有高重复频率、高平均功率的皮秒放大激光在科学研究和工业生产中有着重要的应用, 尤其是在脆性材料的加工领域, 绿光或紫外皮秒激光具有独特的优势. 基于我们研制的平均功率23.2 W、重复频率500 kHz、脉冲宽度13.4 ps的Nd:YVO4激光器, 开展了LBO晶体高效率二倍频与三倍频的研究. 通过优化相位匹配和晶体内激光的走离, 分别得到了平均功率12.7 W的532 nm二倍频激光和9.25 W的355 nm三倍频激光, 相应的光光转换效率分别为54.7%和39.8%. 激光器具有结构简单、平均功率高、转换效率高等特点, 可以广泛地用于科学研究和工业生产中.
    Picosecond laser with high-repetition-rate and high pulse energy is widely favorite in many scientific and industrial applications. Some nonlinear crystals can be used to efficiently convert a near-infrared laser into a green laser or an ultraviolet laser which has a higher photon energy and a smaller focal area. Especially for high-quality and high-speed transparent hard material fabrication, green or ultraviolet picosecond laser has been found to possess unique advantages. In this paper, the experiments on high-efficiency second-harmonic-generation (SHG) and third-harmonic-generation (THG) by using a home-made all-solid-state picosecond laser amplifier and an LBO crystal are reported. The picosecond laser amplifier consists of a seed source, a regenerative amplifier and a two-stage single-pass amplifier. The seed source is a commercial all-solid-state picosecond oscillator with a pulse duration of 8.3 ps and a repetition rate of 68 MHz. The repetition rate is reduced from 68 MHz to 500 kHz by an electro-optic Pockels cell (PC), and the period doubling bifurcation is minimized by reducing the duration of high voltage in PC. Both the regenerative amplifier and the two-stage single-pass amplifier are pumped by three 30-W continuous-wave fiber-coupled laser diodes. After the regenerative amplifier, the seed laser is amplified to 4.86 W with a repetition rate of 500 kHz at 1064 nm. Then the laser power is increased to 23.2 W by a two-stage single-pass amplifier, and the M2 value of the amplified laser in the X direction and in the Y direction are 1.330 and 1.235, respectively. The final pulse duration is 13.4 ps, which is slightly stretched in the amplification chain compared with the seed pulse duration (8.3 ps). For high-efficiency SHG and THG from near-infrared to green and ultraviolet, we carefully study the optical characteristics of some nonlinear crystals, such as LBO, BBO, BIBO, CLBO, etc., and we find that the LBO crystal, which has a high damage threshold, small walk-off and high nonlinear coefficient, is the best choice for both SHG and THG. Then the parameters of the two crystals for SHG and THG are specially designed according to the phase matching condition, the walk-off and the laser parameter. As a result, a 4-mm-long type-I phase matching LBO with cutting angle of θ = 90° and φ = 11.6° is used for SHG, and a 3-mm-long type-II phase matching LBO with cutting angle of θ = 42.2° and φ = 90° is used for THG. Finally, we realize high-efficiency frequency conversion with SHG power of 12.7 W at 532 nm and THG power of 9.25 W at 355 nm. The corresponding optical-optical conversion efficiencies reach 54.7% and 39.6%, respectively.
      通信作者: 王兆华, zhwang@iphy.ac.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDB16030200)、国家自然科学基金(批准号: 11774410, 61575217)、国家重点研发计划(批准号: 2017YFC0110301)和中国科学院前沿科学重点研究计划(批准号: KJZD-EW-L11-03)资助的课题.
      Corresponding author: Wang Zhao-Hua, zhwang@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16030200), the National Natural Science Foundation of China (Grant Nos. 11774410, 61575217), the National Key Research and Development Program of China (Grant No. 2017YFC0110301), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. KJZD-EW-L11-03).
    [1]

    Erny C, Heese C, Haag M, Gallmann L, Keller U 2009 Opt. Express 17 1340Google Scholar

    [2]

    王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161Google Scholar

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161Google Scholar

    [3]

    何会军, 蒋建旺, 程梦尧, 宋贾俊, 王兆华, 方少波, 魏志义 2018 光子学报 47 0914002

    He H J, Jiang J W, Cheng M Y, Song J J, Wang Z H, Fang S B, Wei Z Y 2018 Acta Photon. Sin. 47 0914002

    [4]

    Muhammad N, Whitehead D, Boor A, Oppenlander W, Liu Z, Li L 2012 Appl. Phys. A 106 607Google Scholar

    [5]

    Weck A, Crawford T H R, Wilkinson D S, Haugen H K, Preston J S 2008 Appl. Phys. A 90 537Google Scholar

    [6]

    张菲, 段军, 曾晓雁, 李祥友 2009 中国激光 36 3143

    Zhang F, Duan J, Zeng X Y, Li X Y 2009 Chin. J. Las. 36 3143

    [7]

    Rauch T, Delmdahl R, Pfeufer V, Mondry M 2009 Laser Tech. J. 6 20

    [8]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [9]

    Liu J X, Wang W, Wang Z H, Lü Z G, Zhang Z Y, Wei Z Y 2015 Appl. Sci. 5 1590Google Scholar

    [10]

    Offerhaus H L, Godfried H P, Witteman W J 1996 Opt. Commun. 128 61Google Scholar

    [11]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [12]

    毛小洁, 秘国江, 庞庆生, 邹跃 2013 中国激光 38 1002004

    Mao X J, Bi G J, Pang Q S, Zou Y 2013 Chin. J. Las. 38 1002004

    [13]

    Zhu P, Li D J, Liu Q Y, Chen J, Fu S J, Shi P, Du K M, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Borsutzky A, Briinger R, Huang C H, Wallenstein R 1991 Appl. Phys. B 52 55Google Scholar

    [15]

    Ghotbi M, Sun Z, Majchrowski A, Michalski E, Kityk I V, Ebrahim Z M 2006 Appl. Phys. Lett. 89 173124Google Scholar

    [16]

    Ueda K, Orii Y,Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [17]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197Google Scholar

    [18]

    Yoshida H, Fujita H, Nakatsuka M, Yoshimura M, Sasaki T, Kamimura T, Yoshida K 2006 Jpn. J. Appl. Phys. 45 766Google Scholar

    [19]

    王正平, 滕冰, 杜晨林, 许心光, 傅琨, 许贵宝, 王继扬, 邵宗书 2003 物理学报 52 2176Google Scholar

    Wang Z P, Teng B, Du C L, Xu X G, Fu K, Xu G B, Wang J Y, Shao Z S 2003 Acta Phys. Sin. 52 2176Google Scholar

    [20]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H G, Chen C T 1993 Appl. Phys. Lett. 62 2614Google Scholar

    [21]

    Wu B C, Chen N, Chen C T, Deng D Q, Xu Z Y 1989 Opt. Lett. 14 1080Google Scholar

    [22]

    Chen L Y, Bai Z X, Pan Y L, Chen M, Li G 2013 Opt. Eng. 52 086107Google Scholar

  • 图 1  全固态皮秒激光放大器及SHG与THG光路图(HR, 高反镜; DM, 双色镜; LD, 二极管激光器; HT 1064 HR 532, 在1064 nm处高透, 在532 nm处高反)

    Fig. 1.  Structure of all-solid-state picosecond laser amplifier, SHG and THG (HR, high reflectivity mirror; DM, dichroic mirror; LD, laser diode; HT 1064 HR 532: high transmittance @ 1064 nm and high reflectivity @ 532 nm).

    图 2  种子光和基频光自相关曲线(sech2拟合) (a)种子光自相关曲线; (b)基频光自相关曲线

    Fig. 2.  Self-reference curve of seed laser and fundamental laser (sech2 fitting): (a) Self-referencecurve of seed laser; (b) self-reference curve of fundamental laser.

    图 3  基频光光谱图和光束质量(M2)图 (a)基频光光谱图; (b)基频光光束质量(M2)图

    Fig. 3.  Wavelength and beam quality (M2) of fundamental laser: (a) Wavelength of fundamental laser; (b) beam quality (M2) of fundamental laser.

    图 4  SHG与THG过程中光束空间走离及补偿的原理示意图

    Fig. 4.  Schematic diagram of space walk-off and compensation for SHG and THG.

    图 5  SHG激光功率稳定性

    Fig. 5.  Power stability of SHG power.

    图 6  THG激光功率曲线图

    Fig. 6.  THG output power versus input power.

    图 7  (a) SHG与(b) THG光谱图

    Fig. 7.  Wavelength of (a) SHG and (b) THG.

    表 1  非线性晶体参数

    Table 1.  Parameters of nonlinear crystal.

    晶体透射范围/nm损伤阈值/GW·cm–2deff 11/pm·V–1deff 22/pm·V–1走离角1/mrad走离角2/mrad
    LBO160—260036.3[18]0.83 (xy)0.53 (yz)7.06 (xy)9.30 (yz)
    BBO185—260018.27[18]2.012.0255.8672.33
    KDP177—170020[18]0.260.3228.0630.12
    BIBO286—25003.4[19]2.96 (yz)3.9 (yz)25.74 (yz)67.86 (yz)
    CLBO180—257027.3[18]0.380.5231.4137.16
    CBO170—300026[20]1.01 (xz)1.19 (xy)31.17 (xz)16.25 (xy)
    注: 1, 1064 nm倍频输出532 nm的条件下; 2, 1064 nm与532 nm和频输出355 nm的条件下
    下载: 导出CSV
  • [1]

    Erny C, Heese C, Haag M, Gallmann L, Keller U 2009 Opt. Express 17 1340Google Scholar

    [2]

    王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161Google Scholar

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161Google Scholar

    [3]

    何会军, 蒋建旺, 程梦尧, 宋贾俊, 王兆华, 方少波, 魏志义 2018 光子学报 47 0914002

    He H J, Jiang J W, Cheng M Y, Song J J, Wang Z H, Fang S B, Wei Z Y 2018 Acta Photon. Sin. 47 0914002

    [4]

    Muhammad N, Whitehead D, Boor A, Oppenlander W, Liu Z, Li L 2012 Appl. Phys. A 106 607Google Scholar

    [5]

    Weck A, Crawford T H R, Wilkinson D S, Haugen H K, Preston J S 2008 Appl. Phys. A 90 537Google Scholar

    [6]

    张菲, 段军, 曾晓雁, 李祥友 2009 中国激光 36 3143

    Zhang F, Duan J, Zeng X Y, Li X Y 2009 Chin. J. Las. 36 3143

    [7]

    Rauch T, Delmdahl R, Pfeufer V, Mondry M 2009 Laser Tech. J. 6 20

    [8]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [9]

    Liu J X, Wang W, Wang Z H, Lü Z G, Zhang Z Y, Wei Z Y 2015 Appl. Sci. 5 1590Google Scholar

    [10]

    Offerhaus H L, Godfried H P, Witteman W J 1996 Opt. Commun. 128 61Google Scholar

    [11]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [12]

    毛小洁, 秘国江, 庞庆生, 邹跃 2013 中国激光 38 1002004

    Mao X J, Bi G J, Pang Q S, Zou Y 2013 Chin. J. Las. 38 1002004

    [13]

    Zhu P, Li D J, Liu Q Y, Chen J, Fu S J, Shi P, Du K M, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Borsutzky A, Briinger R, Huang C H, Wallenstein R 1991 Appl. Phys. B 52 55Google Scholar

    [15]

    Ghotbi M, Sun Z, Majchrowski A, Michalski E, Kityk I V, Ebrahim Z M 2006 Appl. Phys. Lett. 89 173124Google Scholar

    [16]

    Ueda K, Orii Y,Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [17]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197Google Scholar

    [18]

    Yoshida H, Fujita H, Nakatsuka M, Yoshimura M, Sasaki T, Kamimura T, Yoshida K 2006 Jpn. J. Appl. Phys. 45 766Google Scholar

    [19]

    王正平, 滕冰, 杜晨林, 许心光, 傅琨, 许贵宝, 王继扬, 邵宗书 2003 物理学报 52 2176Google Scholar

    Wang Z P, Teng B, Du C L, Xu X G, Fu K, Xu G B, Wang J Y, Shao Z S 2003 Acta Phys. Sin. 52 2176Google Scholar

    [20]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H G, Chen C T 1993 Appl. Phys. Lett. 62 2614Google Scholar

    [21]

    Wu B C, Chen N, Chen C T, Deng D Q, Xu Z Y 1989 Opt. Lett. 14 1080Google Scholar

    [22]

    Chen L Y, Bai Z X, Pan Y L, Chen M, Li G 2013 Opt. Eng. 52 086107Google Scholar

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [4] 黄文艺, 杨保东, 樊健, 王军民, 周海涛. 基于铯原子气室反抽运光增强相干蓝光. 物理学报, 2022, 71(18): 187801. doi: 10.7498/aps.71.20220480
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 刘鹏翔, 李伟, 郭丽媛, 祁峰, 庞子博, 李惟帆, 汪业龙, 刘朝阳. 基于有机吡啶盐晶体的太赫兹频率上转换探测. 物理学报, 2021, 70(5): 050701. doi: 10.7498/aps.70.20201908
    [7] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [8] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [9] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用. 物理学报, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [10] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [13] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [14] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究. 物理学报, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [15] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [16] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [19] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. 激光脉冲放大器的增益通量曲线研究. 物理学报, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  13889
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2019-04-26
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回