搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甚高频激发容性耦合氩等离子体的电子能量分布函数的演变

王俊 王涛 唐成双 辛煜

引用本文:
Citation:

甚高频激发容性耦合氩等离子体的电子能量分布函数的演变

王俊, 王涛, 唐成双, 辛煜

Evolution of electron energy distribution function in capacitively coupled argon plasma driven by very high frequency

Wang Jun, Wang Tao, Tang Cheng-Shuang, Xin Yu
PDF
导出引用
  • 甚高频激发的容性耦合等离子体由于离子通量和能量的相对独立可控而受到人们的关注. 本文采用朗缪尔探针诊断技术测量了40.68 MHz激发的容性耦合Ar等离子体的特性(如电子能量概率分布、电子温度和密度等)随宏观参量的演变情况. 实验结果表明, 电子能量概率分布随着气压的增加从双麦克斯韦分布逐步转变为单麦克斯韦分布并最终演变为Druyvesteyn分布, 而射频激发功率的增加促进了低能电子布居数的增强; 在从等离子体放电中心移向边界的过程中, 低能电子的布居数显著下降, 而高能电子的布居则有所上升; 放电极板间距的变化直接导致了等离子体中电子加热模式的转变. 另外, 我们也对等离子体中的高低能电子密度和温度的分配情况进行了讨论.
    Capacitively coupled plasma driven by a very high frequency power has attracted much attention due to its rather independent control of ion flux and energy. In this paper, Langmuir probe diagnostic technique is used to observe the evolution of plasma properties such as electron energy distribution function, electron temperature and density, etc. Our experiment is performed in capacitively coupled argon plasma driven by a 40.68 MHz frequency. Experimental results show that the electron energy probability function changes from bi-Maxwellian type to single-Maxwellian type and then to Druyvesteyn type with the increase of the discharge pressure. At a low gas pressure, the electron collisionless heating in bulk plasma leads to bi-Maxwellian type in electron energy possibility function (EEPF), which has a double temperatures structure in EEPF. As the gas pressure increases, the electrons with low energy are able to collide with the neutral species more frequently, thus they gain energies through collisional heating. Therefore, these electrons can overcome the dc ambipolar potential and the collisional heating becomes a main electron heating mechanism. Increasing the input power enhances the electron population with low energy. From the discharge center to the edge, electron population with low energy decreases clearly due to the dc ambipolar potential, and they are unable to reach an oscillating sheath where collisionless heating occurs. However, electron population with high energy is slightly increased. The result indicates that more uniform plasma can be achieved at a high gas pressure. Additionally, EEPFs are measured for different discharge gaps between electrodes. The change of electrode gap for the plasma leads to a transition of electron heating mode along the axial direction. In order to characterize the electron behavior further, we introduce the ratio of the cold electron density to hot electron density (α) and the ratio of cold electron temperature to hot electron temperature (β). The ratios also show the proportional distributions of the cold and hot electron populations. The electrode gap has a great influences on α while little influence on β. When the discharge gap between electrodes varies from 20 to 40 mm, α changes from 0.2 to 0.5 while β has the same trend. Spatial distributions of electron density and temperature with low and high energy are also discussed.
      通信作者: 辛煜, yuxin@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175127)资助的课题.
      Corresponding author: Xin Yu, yuxin@suda.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11175127).
    [1]

    Xu D S, Zou S, Xin Y, Su X D, Wang X S 2014 Chin. Phys. B 23 065201

    [2]

    Conrads H, Schmidt M 2000 Plasma sources Sci. Technol. 9 441

    [3]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [4]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003

    [5]

    Jiang W, Wang H Y, Zhao S X, Wang Y N 2009 J. Phys. D 42 102005

    [6]

    Fernández Palop J I, Ballesteros J, Colomer V, Hernández M A 1995 Rev. Sci. Instrum. 66 4625

    [7]

    Bang J Y, Chung C W 2010 Phys. Plasmas 17 123506

    [8]

    Chung T H 2006 Phys. Plasmas 13 024501

    [9]

    Wang X, Hershkowitz N 2006 Phys. Plasmas 13 053503

    [10]

    Godyak V A, Popov O A 1985 J. Appl. Phys. 57 53

    [11]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996

    [12]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [13]

    You S J, Ahn S K, Chang H Y 2006 Appl. Phys. Lett. 89 171502

    [14]

    Turner M M, Hopkins M B 1992 Phys. Rev. Lett. 69 3511

    [15]

    Turner M M 1995 Phys. Rev. Lett. 75 1312

    [16]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006

    [17]

    You S J, Chung C W, Chang H Y 2005 Appl. Phys. Lett. 87 041501

    [18]

    Park G Y, You S J, Iza F, Lee J K 2007 Phys. Rev. Lett. 98 085003

    [19]

    Liu Y X, Zhang Q Z, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [20]

    Ahn S K, You S J, Chang H Y 2006 Appl. Phys. Lett. 89 161506

    [21]

    Suremdra M, Graves D B 1991 Appl. Phys. Lett. 59 2091

    [22]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303

    [23]

    Sansonnens L, Strahm B, Derendinger L, Howling A A, Hollenstein C, Ellert C, Schmitt J P M 2005 J. Vac. Sci. Technol. A 23 922

    [24]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma sources Sci. Technol. 15 302

    [25]

    Hong B S, Xin Y, Zou S, Xu D S, Yu Y Q 2013 Acta Phys. Sin. 62 115202 (in Chinese) [洪布双, 辛煜, 邹帅, 徐东升, 虞一青 2013 物理学报 62 115202]

    [26]

    Lee M H, Lee H C, Chung C W 2010 Phys. Rev. Lett. 81 046402

    [27]

    Lee H C, Chung C W 2012 Phys. Plasmas 19 033514

    [28]

    Godyak V A, Piejak R B 1993 Appl. Phys. Lett. 63 3137

  • [1]

    Xu D S, Zou S, Xin Y, Su X D, Wang X S 2014 Chin. Phys. B 23 065201

    [2]

    Conrads H, Schmidt M 2000 Plasma sources Sci. Technol. 9 441

    [3]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [4]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003

    [5]

    Jiang W, Wang H Y, Zhao S X, Wang Y N 2009 J. Phys. D 42 102005

    [6]

    Fernández Palop J I, Ballesteros J, Colomer V, Hernández M A 1995 Rev. Sci. Instrum. 66 4625

    [7]

    Bang J Y, Chung C W 2010 Phys. Plasmas 17 123506

    [8]

    Chung T H 2006 Phys. Plasmas 13 024501

    [9]

    Wang X, Hershkowitz N 2006 Phys. Plasmas 13 053503

    [10]

    Godyak V A, Popov O A 1985 J. Appl. Phys. 57 53

    [11]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996

    [12]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [13]

    You S J, Ahn S K, Chang H Y 2006 Appl. Phys. Lett. 89 171502

    [14]

    Turner M M, Hopkins M B 1992 Phys. Rev. Lett. 69 3511

    [15]

    Turner M M 1995 Phys. Rev. Lett. 75 1312

    [16]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006

    [17]

    You S J, Chung C W, Chang H Y 2005 Appl. Phys. Lett. 87 041501

    [18]

    Park G Y, You S J, Iza F, Lee J K 2007 Phys. Rev. Lett. 98 085003

    [19]

    Liu Y X, Zhang Q Z, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [20]

    Ahn S K, You S J, Chang H Y 2006 Appl. Phys. Lett. 89 161506

    [21]

    Suremdra M, Graves D B 1991 Appl. Phys. Lett. 59 2091

    [22]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303

    [23]

    Sansonnens L, Strahm B, Derendinger L, Howling A A, Hollenstein C, Ellert C, Schmitt J P M 2005 J. Vac. Sci. Technol. A 23 922

    [24]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma sources Sci. Technol. 15 302

    [25]

    Hong B S, Xin Y, Zou S, Xu D S, Yu Y Q 2013 Acta Phys. Sin. 62 115202 (in Chinese) [洪布双, 辛煜, 邹帅, 徐东升, 虞一青 2013 物理学报 62 115202]

    [26]

    Lee M H, Lee H C, Chung C W 2010 Phys. Rev. Lett. 81 046402

    [27]

    Lee H C, Chung C W 2012 Phys. Plasmas 19 033514

    [28]

    Godyak V A, Piejak R B 1993 Appl. Phys. Lett. 63 3137

  • [1] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [2] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [3] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [4] 周前红, 董志伟. 弱电离大气等离子体电子能量分布函数的理论研究. 物理学报, 2013, 62(1): 015201. doi: 10.7498/aps.62.015201
    [5] 何济洲, 贺兵香. 考虑透射概率的能量选择性电子热泵. 物理学报, 2010, 59(4): 2345-2349. doi: 10.7498/aps.59.2345
    [6] 顾旭东, 赵正予, 倪彬彬, 王 翔, 邓 峰. 地基高频加热激励ELF/VLF波对辐射带高能电子的准线性散射. 物理学报, 2008, 57(10): 6673-6682. doi: 10.7498/aps.57.6673
    [7] 袁强华, 辛 煜, 黄晓江, 孙 恺, 宁兆元. 13.56 MHz 低频功率对60 MHz射频容性耦合等离子体的电特性的影响. 物理学报, 2008, 57(11): 7038-7043. doi: 10.7498/aps.57.7038
    [8] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究. 物理学报, 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [9] 谭世杰, 郑 坚. 不同加热机制产生的超热电子的相干渡越辐射谐波研究. 物理学报, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [10] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [11] 李 杰, 董晨钟, 颉录有. 内壳层电子激发(电离)诱发的电子波函数的弛豫及其对辐射跃迁概率的影响. 物理学报, 2006, 55(2): 655-660. doi: 10.7498/aps.55.655
    [12] 薄 勇, 王德武, 应纯同. 电子枪加热合金熔池的数值分析. 物理学报, 2003, 52(4): 883-889. doi: 10.7498/aps.52.883
    [13] 郑瑞伦, 陈志谦, 张翠玲, 刘 俊. HgS/CdS/HgS球状纳米系统电子的能量与寿命以及概率分布. 物理学报, 2003, 52(9): 2284-2289. doi: 10.7498/aps.52.2284
    [14] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布. 物理学报, 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [15] 张军, 王恩耀, 关维恕, 程仕清, 段淑云, 顾彪, 尚振奎. 电子束注入简单磁镜中被电子迴旋共振加热捕获的实验研究. 物理学报, 1990, 39(8): 115-120. doi: 10.7498/aps.39.115-2
    [16] 关维恕, 王恩耀, 程仕清, 段淑云, 王纪海, 顾彪, 尚振奎. 电子迥旋加热等离子体及热电子环特性的实验研究. 物理学报, 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
    [17] 朱文浩, 朱南强, 陈跃山. 射频低压等离子体电子能量分布函数的探针诊断. 物理学报, 1989, 38(2): 236-246. doi: 10.7498/aps.38.236
    [18] 陈雁萍, 柯孚久, 蔡诗东. 产生高β托卡马克中高能电子的电子迴旋共振加热方法. 物理学报, 1986, 35(10): 1271-1280. doi: 10.7498/aps.35.1271
    [19] 陈建文, 傅淑芬. 放电激励KrF,ArF激光器中电子能量分布函数和输运系数的计算. 物理学报, 1981, 30(9): 1165-1173. doi: 10.7498/aps.30.1165
    [20] 吴全德. 光电子的初能量分布与角度分布. 物理学报, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
计量
  • 文章访问数:  2660
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-11-27
  • 刊出日期:  2016-03-05

甚高频激发容性耦合氩等离子体的电子能量分布函数的演变

  • 1. 苏州大学物理·光电与能源学部, 苏州 215006
  • 通信作者: 辛煜, yuxin@suda.edu.cn
    基金项目: 国家自然科学基金(批准号: 11175127)资助的课题.

摘要: 甚高频激发的容性耦合等离子体由于离子通量和能量的相对独立可控而受到人们的关注. 本文采用朗缪尔探针诊断技术测量了40.68 MHz激发的容性耦合Ar等离子体的特性(如电子能量概率分布、电子温度和密度等)随宏观参量的演变情况. 实验结果表明, 电子能量概率分布随着气压的增加从双麦克斯韦分布逐步转变为单麦克斯韦分布并最终演变为Druyvesteyn分布, 而射频激发功率的增加促进了低能电子布居数的增强; 在从等离子体放电中心移向边界的过程中, 低能电子的布居数显著下降, 而高能电子的布居则有所上升; 放电极板间距的变化直接导致了等离子体中电子加热模式的转变. 另外, 我们也对等离子体中的高低能电子密度和温度的分配情况进行了讨论.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回