搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应

朱子豪 高有康 曾严 程政 马洪华 易煦农

引用本文:
Citation:

基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应

朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农

Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system

Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong
PDF
HTML
导出引用
  • 为了降低功耗、实现超快速响应和动态可调谐, 设计了基于四盘形谐振腔耦合等离子体波导系统. 使用两种不同的方法理论分析了等离子体诱导透明(PIT)效应: 一种是明暗模式谐振腔之间的直接相消干涉, 另一种是谐振腔之间通过等离子体波导的间接耦合. 采用光学Kerr效应超快调控石墨烯-Ag复合材料波导的传输相移, 实现了1 ps量级的超快响应时间. 当泵浦光强低至11.7 MW/cm2时, 等离子体诱导透明系统能够实现透射光谱2π相移. 通过耦合模式理论和时域有限差分法, 研究了模型的三波段PIT效应及其慢光特性. 研究表明, 系统透射谱的透射峰值超过80%, 最大群折射率高达368. 并且, 整个系统的尺寸小于0.5 μm2. 研究结果为低功耗、超快速、超紧凑型和动态可调谐的多通道光滤波和光存储器件的设计和制作提供了思路.
    In order to reduce power consumption and realize ultrafast response time and dynamic tunability, a plasmonic waveguide system based on four disk resonators is designed. A plasmon induced transparency effect is theoretically analyzed by using two different methods: one is the direct destructive interference between bright mode resonator and dark mode resonator, and the other is the indirect coupling through a plasmonic waveguide. Owing to the giant effective nonlinear Kerr coefficient of the graphene-Ag composite material structure and the enhancement characteristics of slow light response to optical Kerr effect, the pump intensity of PIT system for changing the phase shift of transmission spectrum is greatly reduced. An ultrafast response time of 1 ps is achieved, and 0.4π, 0.8π, 1.2π, 1.6π and 2π-phase shift of the transmission spectrum in the plasmon induced transparency system are achieved with the intensity of the pump light as low as 2.34, 4.68, 7.02, 9.36, 11.7 MW/cm–2, respectively. In this work, a plasmonic waveguide coupled directly by two small disk resonators is employed, because two small disk resonators play a role of the slit between the waveguide and the resonators, and also act as two separate resonators side-coupled with a plasmonic waveguide, which leads to the more efficient coupling of electromagnetic energy in the waveguide into the big disk resonators to form resonance and easier storage of light in the resonator. The triple-band plasmon induced transparency (PIT) effect and slow light properties of the model are analyzed by the expression of the deduced theoretical transmittance based on the coupled mode theory, indicating that they are very consistent with the finite-difference time-domain simulations. The results show that the transmission peak of the system is over 80% and the maximum group index is as high as 368. Furthermore, the disk resonators are easy to fabricate and the size of the entire PIT structure is < 0.5 μm2, which is beneficial to the design of optoelectronic device on-chip integration. The research results have important application prospects in highly integrating optical circuits and networks, and also provide the ideas for the design and fabrication of multi-channel optical filter and light storage devices with low power consumption, ultrafast nonlinear response, ultracompact and dynamical tunability.
      通信作者: 马洪华, mhh_0708@hbeu.edu.cn ; 易煦农, xnyi@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11547017)资助的课题.
      Corresponding author: Ma Hong-Hua, mhh_0708@hbeu.edu.cn ; Yi Xu-Nong, xnyi@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547017).
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Kekatpure R D, Barnard E S, Cai W, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [4]

    Zhao F, Lin J, Lei Z, Yi Z, Qin F, Zhang J, Liu L, Wu X, Yang W, Wu P 2022 Phys. Chem. Chem. Phys. 24 4871Google Scholar

    [5]

    Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z, Zhao R T 2015 Opt. Express 23 6554Google Scholar

    [6]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D: Appl. Phys. 50 455107Google Scholar

    [7]

    王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清 2022 物理学报 71 024201Google Scholar

    Wang B Y, Zhu Z H, Gao Y K, Zeng Q D, Liu Y, Du J, Wang T, Yu H Q 2022 Acta Phys. Sin. 71 024201Google Scholar

    [8]

    Zeng Y, Ling Z X, Liu G D, Wang L L, Lin Q 2022 Opt. Express 30 14103Google Scholar

    [9]

    Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar

    [10]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [11]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [12]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [13]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Hong J L, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [14]

    Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 2527Google Scholar

    [15]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [16]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [17]

    Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Cheng S, Yang W, Yu Y, Wu P 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar

    [18]

    Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 053803Google Scholar

    [19]

    Han X, Wang T, Li X, Xiao S, Zhu Y 2015 Opt. Express 23 31945Google Scholar

    [20]

    Saraswat V, Jacobberger R M, Arnold M S 2021 ACS Nano 15 3674Google Scholar

    [21]

    Zhou F, Qin F, Yi Z, Yao W, Liu Z, Wu X, Wu P 2021 Phys. Chem. Chem. Phys. 23 17041Google Scholar

    [22]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D: Appl. Phys. 51 055103Google Scholar

    [23]

    Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D, Zheludev N I 2012 Appl. Phys. Lett. 100 181109Google Scholar

    [24]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312Google Scholar

    [25]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [26]

    Wu J B, Jin B B, Wan J, Liang L J, Zhang Y G, Jia T, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2011 Appl. Phys. Lett. 99 161113Google Scholar

    [27]

    Lu H, Liu X, Wang L, Gong Y, Mao D 2011 Opt. Express 19 2910Google Scholar

    [28]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [29]

    Lei F, Gao M, Du C, Jing Q L, Long G L 2015 Opt. Express 23 11508Google Scholar

    [30]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 104 211108Google Scholar

    [31]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [32]

    Ren T X, Chen L 2019 Opt. Lett. 44 5446Google Scholar

    [33]

    Ma Q L, Hong W Y, Shui L L 2022 Opt. Express 30 3055Google Scholar

    [34]

    Wang B K, Guo T, Gai K, Yan F, Wang R X, Li L 2022 Appl. Opt. 61 3218Google Scholar

    [35]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [36]

    Han X, Wang T, Li X, Liu B, He Y, Tang J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [37]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 084211Google Scholar

  • 图 1  (a) 小盘形谐振腔直接耦合MIM波导的结构; (b) 小盘形谐振腔的半径r不同时, 结构的透射光谱 (图(b)插图为r = 65 nm、波长为749 nm时透射凹陷处的磁场分布)

    Fig. 1.  (a) Schematic diagram of a small disk resonator directly coupled to a MIM waveguide; (b) transmission spectra of thestructure with the different radius of the small disk resonator r (The inset in panel (b) shows the magnetic field distribution at the transmission dip wavelength of 749 nm with r = 65 nm).

    图 2  四盘形谐振腔耦合MIM波导的模型图

    Fig. 2.  Schematic of four-disk resonators coupled to a MIM waveguide system.

    图 3  三波段PIT效应的实现原理示意图

    Fig. 3.  Schematic diagram of realizing principle of triple PIT effect.

    图 4  (a)—(c) 不同ΔR下系统的透射谱, 其中(a) ΔR = 6 nm, (b) ΔR = 4 nm, (c) ΔR = 2 nm; (d)—(j)当ΔR = 6 nm时, 系统在不同波长处的磁场分布, 其中(d) λI = 758 nm, (e) λII= 782 nm, (f) λIII = 803 nm, (g) λA = 747 nm, (h) λB = 773 nm, (i) λC = 789 nm, (j) λD = 811 nm

    Fig. 4.  (a)–(c) Transmission spectra with various radius detuning ΔR: (a) ΔR = 6 nm; (b) ΔR = 4 nm; (c) ΔR = 2 nm. (d)–(j) Magnetic field distributions corresponding to different wavelengths with ΔR = 6 nm: (d) λI = 758 nm; (e) λII = 782 nm; (f) λIII = 803 nm; (g) λA = 747 nm; (h) λB = 773 nm; (i) λC = 789 nm; (j) λD = 811 nm.

    图 5  MIM波导宽度w = 52 nm时, 有效折射率实部曲线和相移曲线

    Fig. 5.  Real part of the effective refractive index and phase shift curve in the MIM waveguide with w = 52 nm.

    图 6  泵浦光诱导信号光相移与泵浦光强之间的关系

    Fig. 6.  Relationship between the phase shift of the induced signal light and the pump light intensity.

    图 7  不同泵浦光强调谐下, (a1)—(e1)三波段PIT效应归一化透射谱及(a2)—(e2)相应的相移响应和群折射率 (a1), (a2) I = 2.34 MW/cm2, Δϕ = 0.8π; (b1), (b2) I = 4.68 MW/cm2, Δϕ = 0.6π; (c1), (c2) I = 7.02 MW/cm2, Δϕ = 0.4π; (d1), (d2) I = 9.36 MW/cm2, Δϕ = 0.2π; (e1), (e2) I = 11.70 MW/cm2, Δϕ = 0

    Fig. 7.  (a1)–(e1) Transmission spectra of tiple PIT effect with (a2)—(e2) corresponding phase shift responses and group indexunder different pump light intensity: (a1), (a2) I = 2.34 MW/cm2, Δϕ = 0.8π; (b1), (b2) I = 4.68 MW/cm2, Δϕ = 0.6π; (c1), (c2) I = 7.02 MW/cm2, Δϕ = 0.4π; (d1), (d2) I = 9.36 MW/cm2, Δϕ = 0.2π; (e1), (e2) I = 11.70 MW/cm2, Δϕ = 0.

    图 8  三波段PIT效应透射光谱随泵浦光强变化的演化图

    Fig. 8.  Evolution of the triple PIT effect with the pump light intensity.

    表 1  不同结构模型的PIT波段数量、最大透射率和最大群折射率的对比

    Table 1.  Comparison of the number of PIT band, maximum transmission and maximum group index of different structural models.

    结构模型PIT波段
    数量
    最大透
    射率/%
    最大群
    折射率
    大小盘形谐振腔耦
    合波导结构
    三波段81368.0
    三盘形谐振腔边耦
    合波导结构
    双波段5035.0[18]
    四盘形谐振腔耦
    合波导结构
    三波段8614.5[36]
    双盘形谐振腔耦
    合波导结构
    单波段6053.2[37]
    下载: 导出CSV
  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Kekatpure R D, Barnard E S, Cai W, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [4]

    Zhao F, Lin J, Lei Z, Yi Z, Qin F, Zhang J, Liu L, Wu X, Yang W, Wu P 2022 Phys. Chem. Chem. Phys. 24 4871Google Scholar

    [5]

    Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z, Zhao R T 2015 Opt. Express 23 6554Google Scholar

    [6]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D: Appl. Phys. 50 455107Google Scholar

    [7]

    王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清 2022 物理学报 71 024201Google Scholar

    Wang B Y, Zhu Z H, Gao Y K, Zeng Q D, Liu Y, Du J, Wang T, Yu H Q 2022 Acta Phys. Sin. 71 024201Google Scholar

    [8]

    Zeng Y, Ling Z X, Liu G D, Wang L L, Lin Q 2022 Opt. Express 30 14103Google Scholar

    [9]

    Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar

    [10]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [11]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [12]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [13]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Hong J L, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [14]

    Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 2527Google Scholar

    [15]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [16]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [17]

    Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Cheng S, Yang W, Yu Y, Wu P 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar

    [18]

    Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 053803Google Scholar

    [19]

    Han X, Wang T, Li X, Xiao S, Zhu Y 2015 Opt. Express 23 31945Google Scholar

    [20]

    Saraswat V, Jacobberger R M, Arnold M S 2021 ACS Nano 15 3674Google Scholar

    [21]

    Zhou F, Qin F, Yi Z, Yao W, Liu Z, Wu X, Wu P 2021 Phys. Chem. Chem. Phys. 23 17041Google Scholar

    [22]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D: Appl. Phys. 51 055103Google Scholar

    [23]

    Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D, Zheludev N I 2012 Appl. Phys. Lett. 100 181109Google Scholar

    [24]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312Google Scholar

    [25]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [26]

    Wu J B, Jin B B, Wan J, Liang L J, Zhang Y G, Jia T, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2011 Appl. Phys. Lett. 99 161113Google Scholar

    [27]

    Lu H, Liu X, Wang L, Gong Y, Mao D 2011 Opt. Express 19 2910Google Scholar

    [28]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [29]

    Lei F, Gao M, Du C, Jing Q L, Long G L 2015 Opt. Express 23 11508Google Scholar

    [30]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 104 211108Google Scholar

    [31]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [32]

    Ren T X, Chen L 2019 Opt. Lett. 44 5446Google Scholar

    [33]

    Ma Q L, Hong W Y, Shui L L 2022 Opt. Express 30 3055Google Scholar

    [34]

    Wang B K, Guo T, Gai K, Yan F, Wang R X, Li L 2022 Appl. Opt. 61 3218Google Scholar

    [35]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [36]

    Han X, Wang T, Li X, Liu B, He Y, Tang J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [37]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 084211Google Scholar

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [4] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [6] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [8] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [9] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [10] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [11] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [12] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [13] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [14] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [15] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [16] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [17] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [19] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [20] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法. 物理学报, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
计量
  • 文章访问数:  4052
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2022-08-08
  • 上网日期:  2022-12-13
  • 刊出日期:  2022-12-24

/

返回文章
返回