搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同效应的等离子体诱导透明及光开关与慢光应用

胡树南 李德琼 詹杰 高恩多 王琦 刘南柳 聂国政

引用本文:
Citation:

基于协同效应的等离子体诱导透明及光开关与慢光应用

胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政

Synergy-based plasmon-induced transparency and optical switch and slow light applications

HU Shunan, LI Deqiong, ZHAN Jie, GAO Enduo, WANG Qi, LIU Nanliu, NIE Guozheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 传统的多重等离子体诱导透明效应(plasmon induced transparency, PIT)的产生依赖于多个明暗模之间的耦合. 然而, 为了打破明暗模这一传统机制, 探索一种新的产生方式迫在眉睫. 本文提出一种由纵向石墨烯带和3个横向石墨烯条组成单层石墨烯超表面, 它能够通过两个单PIT之间的协同效应激发出三重PIT. 深入研究发现, 该三重PIT的物理本质源于两个单PIT之间的非相干耦合. 通过调整石墨烯的费米能级和载流子迁移率, 成功实现五频异步光开关向六频异步光开关的动态转换, 其中六频异步光开关的性能非常优异: 当频率点为3.77 THz和6.41 THz时, 调制深度和插入损耗分别达到99.31%和0.12 dB; 当频率点为4.58 THz时, 退相时间和消光比分别为3.16 ps和21.53 dB. 此外, 当调控范围集中在2.8—3.1 THz波段时, 该三重PIT体系能够展现出高达1212的群折射率. 基于以上结果, 说明该石墨烯结构有望为性能优异的慢光设备、光开关等光学器件设计提供新的理论指导.
    Surface plasmons (SPs) are generated by the interaction of conduction electrons on the surface of a metallic medium with photons in light wave, and they have an important phenomenon called plasmon-induced transparency (PIT). The PIT effect is crucial for improving the performance of nano-optical devices by strengthening the interaction between light and matter, thereby enhancing coupling efficiency. As is well known, traditional PIT is mainly achieved through two main ways: either through destructive interference between bright and dark modes, or through weak coupling between two bright modes. Therefore, it is crucial to find a new excitation method to break away from these traditional approaches. In this work, we propose a single-layer graphene metasurface composed of longitudinal graphene bands and three transverse graphene strips , which can excite a tripe PIT through the synergistic effect between two single-PITs. We then leverage the synergistic effect between these two single-PITs to realize a triple-PIT. This approach breaks away from the traditional method of generating PIT through the coupling of bright and dark modes. The numerical simulation results are also obtained using the finite-difference time-domain, which are highly consistent with the results of the coupled-mode theory, thereby validating the accuracy of the results. In addition, by adjusting the Fermi level and carrier mobility of graphene, the dynamic transition from a five-frequency asynchronous optical switch to a six-frequency asynchronous optical switch is successfully achieved. The six-frequency asynchronous optical switch demonstrates exceptional performance: at frequency points of 3.77 THz and 6.41 THz, the modulation depth and insertion loss reach 99.31% and 0.12 dB, respectively, while at the frequency point of 4.58 THz, the dephasing time and extinction ratio are 3.16 ps and 21.53 dB, respectively. Additionally, when the tuning range is from 2.8 THz to 3.1 THz band, the triple-PIT system exhibits a remarkably high group index of up to 1212. These performance metrics exceed those of most traditional slow-light devices. Based on these results, the structure is expected to provide new theoretical ideas for designing high-performance devices, such as optical switches and slow-light devices.
  • 图 1  (a)石墨烯超材料模型结构的全视图; (b)石墨烯结构侧视图; (c)石墨烯结构俯视图, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d)石墨烯结构的制备流程图

    Fig. 1.  (a) Full view of the graphene metamaterial model structure; (b) side view of graphene structure; (c) top view of graphene structure, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d) flow chart for the preparation of graphene structures.

    图 2  耦合模理论示意图

    Fig. 2.  Schematic diagram of coupled mode theory.

    图 3  (a), (b)不同石墨烯阵列的透射光谱; (c)整体结构形成的三重PIT透射谱(Ef = 1 eV, μ = 1.0 m2$ / $(V·s)); (d)dip1, dip2, dip3, dip4对应共振频率下的电场分布图

    Fig. 3.  (a), (b) Transmission spectra of the different arrays; (c) triple-PIT transmission spectra formed by the overall structure (Ef = 1 eV, μ = 1.0 m2/(V·s)); (d) plot of the electric field distribution at the corresponding resonance frequencies for dip1, dip2, dip3, and dip4.

    图 4  (a)三重PIT对应的透射光谱与石墨烯费米能级的关系; (b)不同费米能级下三维透射谱的演化

    Fig. 4.  (a) Transmission spectra corresponding to the triple PIT versus graphene Fermi energy levels; (b) evolution of 3 D transmission at different Fermi energy levels.

    图 5  (a)费米能级处于0.8 eV, 1.2 eV时, 载流子迁移率μ = 1.0 m2/(V·s)情况下五频异步光开关的调制, 其中“ON”表示“打开”, “OFF”表示“关闭”; (b)费米能级处于0.8 eV, 1.2 eV, 迁移率μ = 3.0 m2、(V·s)情况下的六频光开关调制

    Fig. 5.  (a) Modulation of a five-frequency asynchronous optical switch with carrier mobility μ = 1.0 m2/(V·s) at Fermi energy levels of 0.8 eV, 1.2 eV, where “ON” means “open”, “OFF means “close”; (b) six-frequency asynchronous optical switch modulation with Fermi energy levels at 0.8 eV, 1.2 eV and mobility μ = 3.0 m2/(V·s).

    图 6  (a)透射谱与载流子迁移率之间的关系(EF = 1.0 eV); (b)不同载流子迁移率下透射谱的演化; (c)不同载流子迁移率下Re(neff)的演化

    Fig. 6.  (a) Relationship between transmission spectrum and carrier mobility ( EF = 1.0 eV); (b) the evolution of the transmission spectrum with carrier mobility; (c) the evolution of Re(neff) with carrier mobility.

    图 7  (a)—(d)费米能级EF = 0.9, 1.0, 1.1, 1.2 eV的情况下群折射率和相移随频率的变化(μ = 3.0 m2$ / $(V·s))

    Fig. 7.  (a)–(d) Variation of group refractive index and phase shift with frequency for the Fermi energy levels EF = 0.9, 1.0, 1.1, 1.2 eV, respectively (μ = 3.0 m2$ / $(V·s)).

    表 1  不同频率下DM, TD, LI, RE参数

    Table 1.  DM, TD, LI, RE parameters at different frequencies.

    μ = 1.0 m2/(V·s) μ = 3.0 m2/(V·s)
    Frequency/THz DM/% LI/dB TD/ps RE/dB Frequency/THz DM/% LI/dB TD/ps RE/dB
    3.12 85.46 0.14 3.57 8.02 2.56 94.53 0.70 7.12 9.89
    3.77 86.01 0.31 4.75 8.12 3.12 95.96 0.29 5.34 13.77
    4.58 96.02 0.11 4.08 13.15 3.77 99.31 0.17 4.56 17.26
    5.32 84.60 0.18 3.19 7.75 4.58 98.21 0.21 3.16 21.53
    6.41 95.12 0.26 3.70 12.03 5.32 98.65 0.18 5.97 18.24
    6.41 96.45 0. 12 3.73 16.11
    下载: 导出CSV

    表 2  不同图案化石墨烯的性能比较

    Table 2.  Comparison of the properties of different patterned grapheme.

    Reference
    /year
    Modulation modeMaterial structureGroup
    index
    DM/
    %
    LI/
    dB
    TD/
    ps
    RE/
    dB
    [58]/2020Dual-frequencySingle-layer patterned graphene35893.00.32
    [59]/2020Multiple-frequencySingle-layer patterned graphene77.712.5
    [60]/2021Multiple-frequencySingle-layer patterned graphene32192.03.2
    [61]/2022Multiple-frequencySingle-layer patterned graphene99.90.330.848
    [62]/2022Multiple-frequencySingle-layer patterned graphene110097.10.04
    [63]/2023Multiple-frequencySingle-layer patterned graphene97.75.43.8616.41
    [64]/2023Multiple-frequencyMonolayer patterned black
    phosphorus
    2190.22
    [65]/2024Multiple-frequencySingle-layer patterned graphene100087.5
    [30]/2024Multiple-frequencySingle-layer patterned graphene78198.00.51
    This workMultiple-frequencySingle-layer patterned graphene121299.30.1203.1621.53
    下载: 导出CSV
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692Google Scholar

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83Google Scholar

    [6]

    Gao E D, Xu H X, Cao G T, Deng Y, Zhou M F, Li H J, Lu G B 2024 Chin. J. Phys.

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [8]

    Fan X B, Wang G P 2006 Opt. Lett. 31 1322Google Scholar

    [9]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Physica E 134 114850Google Scholar

    [10]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [11]

    Li Z L, Nie G Z, Wang J H, Fang Z, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [12]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701Google Scholar

    [13]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [14]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [15]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885Google Scholar

    [16]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [17]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [18]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. 80 245435Google Scholar

    [19]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138 084701Google Scholar

    [20]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431Google Scholar

    [21]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749Google Scholar

    [22]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [23]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [24]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470Google Scholar

    [25]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584Google Scholar

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [27]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800Google Scholar

    [28]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531Google Scholar

    [29]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [30]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512Google Scholar

    [31]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [32]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J, Wen K H, Qin Y W 2022 J. Phys. D 55 445101Google Scholar

    [33]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820Google Scholar

    [34]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D 55 155101Google Scholar

    [35]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083Google Scholar

    [36]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040Google Scholar

    [37]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [38]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D 52 405203Google Scholar

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. 6 7014Google Scholar

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [42]

    Li X S, Cai W W, An J, Kim S, Nah j, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [43]

    Yin Y, Alivisatos A P 2005 Nature 437 664Google Scholar

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776Google Scholar

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J. Am. Chem. Soc. 129 10937Google Scholar

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.Google Scholar

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330Google Scholar

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [53]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [54]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351Google Scholar

    [55]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710Google Scholar

    [56]

    Boyd R W, Shi Z 2015 Photonics Sci. Found. Technol. Appl. 1 363

    [57]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B Condens. Matter. 80 195415Google Scholar

    [58]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [59]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771Google Scholar

    [60]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [61]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [62]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K, Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575Google Scholar

    [63]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [64]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 J Opt. Soc. Am. A 40 1545Google Scholar

    [65]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

  • [1] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, doi: 10.7498/aps.72.20230663
    [2] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, doi: 10.7498/aps.71.20221365
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20211397
    [4] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20221397
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, doi: 10.7498/aps.70.20211397
    [6] 涂鑫, 陈震旻, 付红岩. 硅基光波导开关技术综述. 物理学报, doi: 10.7498/aps.68.20190011
    [7] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, doi: 10.7498/aps.68.20191068
    [8] 杨友磊, 胡业民, 项农. 捕获电子对低杂波与电子回旋波的协同效应的影响. 物理学报, doi: 10.7498/aps.66.245202
    [9] 何玉娟, 章晓文, 刘远. 总剂量辐照对热载流子效应的影响研究. 物理学报, doi: 10.7498/aps.65.246101
    [10] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, doi: 10.7498/aps.64.154209
    [11] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, doi: 10.7498/aps.63.174202
    [12] 齐新元, 曹政, 白晋涛. 基于一维间距调制型光子晶格的光传输现象. 物理学报, doi: 10.7498/aps.62.064217
    [13] 吴芳芳, 沈义峰, 王永春, 韩奎, 周杰, 张园, 陈琼. 一种紧凑的、可调的、基于缺陷共振的光开关. 物理学报, doi: 10.7498/aps.60.017801
    [14] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, doi: 10.7498/aps.59.3992
    [15] 徐大伟, 梁中翥, 梁静秋, 李伟, 李小奇, 孙智丹, 王维彪. 柔性悬臂电磁驱动光开关的仿真与制作. 物理学报, doi: 10.7498/aps.59.2479
    [16] 秦晓娟, 邵毅全, 郭 旗. 空间相位调制对强非局域空间光孤子的影响. 物理学报, doi: 10.7498/aps.56.5269
    [17] 缪庆元, 黄德修, 张新亮, 余永林, 洪 伟. 集成双波导半导体光放大器光开关实现波长转换的理论研究. 物理学报, doi: 10.7498/aps.56.902
    [18] 李世忱, 薛挺, 于建. 新颖的PPLN电光开关. 物理学报, doi: 10.7498/aps.51.2018
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, doi: 10.7498/aps.51.1521
    [20] 俞重远, 张晓光, 刘秀敏. 三芯非线性光纤耦合器中的短脉冲光开关. 物理学报, doi: 10.7498/aps.50.904
计量
  • 文章访问数:  389
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-02-22
  • 上网日期:  2025-02-25

/

返回文章
返回