-
传统的多重等离子体诱导透明效应(Plasmon induced transparency,PIT)的产生依赖于多个明暗模之间的耦合。然而,为了打破明暗模这一传统机制,探索一种新的产生方式迫在眉睫。本文提出一种由纵向石墨烯带和三个横向石墨烯条组成单层石墨烯超表面,它能够通过两个单PIT之间的协同效应激发出三重PIT。深入研究发现,该三重PIT的物理本质源于两个单PIT之间的非相干耦合。通过调整石墨烯的费米能级和载流子迁移率,成功实现了五频异步光开关向六频异步光开关的动态转换,其中六频异步光开关的性能非常优异:当频率点为3.77 THz、6.41 THz时,调制深度和插入损耗分别达到了99.31%、0.12 dB,当频率点为4.58 THz时,退相时间和消光比分别为3.16 ps和21.53 dB。此外,当调控范围集中在2.8 THz ~ 3.1 THz波段时,该三重PIT体系能够展现出高达1212的群折射率。基于以上结果,该石墨烯结构有望为性能优异的慢光设备、光开关等光学器件设计提供了新的理论指导。Surface plasmons (SPs) is generated by the interaction of conduction electrons on the surface of a metallic medium with photons in light waves, and it has an important phenomenon called plasmon-induced transparency (PIT).The PIT effect is crucial for enhancing the performance of nano-optical devices by strengthening the interaction between light and matter, thereby improving coupling efficiency. However, traditional PIT has been realized in two main ways: either through destructive interference between bright and dark modes, or through weak coupling between two bright modes. Therefore, it is crucial to find a new excitation method to break away from these conventional approaches. In this paper, we propose a hypersurface composed of transverse graphene strips and longitudinal graphene bands, which can generate two single-PITs through the interaction between graphene. We then leverage the synergistic effect between these two single-PITs to realize a triple-PIT. This approach breaks away from the traditional method of generating PIT through the coupling of bright and dark modes. The results of numerical simulations are also obtained using the Finite-difference time-domain(FDTD), which are highly consistent with the results of the coupled-mode theory(CMT), thereby validating the accuracy of the results. In addition, by adjusting the Fermi level and carrier mobility of graphene, the dynamic transition from a five-frequency asynchronous optical switch to a six-frequency asynchronous optical switch has been successfully achieved. The six-frequency asynchronous optical switch demonstrates exceptional performance: at frequency points of 3.77 THz and 6.41 THz, the modulation depth and insertion loss reach 99.31% and 0.12 dB, respectively, while at the frequency point of 4.58 THz, the dephasing time and extinction ratio are 3.16 ps and 21.53 dB, respectively. Additionally, when the tuning range is focused on the 2.8 THz to 3.1 THz band, the triple-PIT system exhibits a remarkably high group index of up to 1212. These performance metrics surpass those of most traditional slow-light devices. Based on these results, the structure is expected to offer new theoretical insights for the design of high-performance devices, such as optical switches and slow-light devices.
-
Keywords:
- Plasmon-induced transparency /
- Synergistic effect /
- Optical switch /
- Slow-light
-
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824.
[2] Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44.
[3] He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595.
[4] Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692.
[5] Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83.
[6] Gao E D, Xu H X, Cao G T, Deng Y, Zhou M F, Li H J, Lu G B 2024 Chin. J. Phys.
[7] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884.
[8] Fan X B, Wang G P 2006 Opt. lett. 2006 31 1322.
[9] Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762.
[10] Li Z L, Nie G Z, Wang J H, Fang Z,Zhan S P 2024 Phys. Rev. Appl. 21 034039.
[11] Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701 (in Chinese) [向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023物理学报 72 128701]
[12] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165.
[13] Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239.
[14] D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885.
[15] Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227.
[16] Vakil A, Engheta N 2011 Science 332 1291.
[17] Jablan M., Buljan H., Soljacic M 2009 Phys. Rev. 80 245435.
[18] Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138.
[19] Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431.
[20] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749.
[21] Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394.
[22] Lu H, Liu X M, Mao D 2012 Phys. Rev., A 85 53803.
[23] Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470.
[24] Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584.
[25] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593.
[26] Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800.
[27] Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531.
[28] Zhu J, Xiong J Y 2023 Measurement 220 113302.
[29] Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512.
[30] Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501.
[31] Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J,Wen K H, Qin Y W 2022 J. Phys. D. 55 445101.
[32] Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820.
[33] Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D. 55 155101.
[34] Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083.
[35] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598.
[36] Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D. 52 405203.
[37] Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040.
[38] Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Phys. E. 134 114850.
[39] Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798.
[40] Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 Acs. Appl. Mater. 6 7014.
[41] Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200.
[42] Li X S, Cai W W, An J, Kim S, Nah j, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312.
[43] Yin Y, Alivisatos A P. 2005 Nature 437 664.
[44] Norris D J, Efros A L, Erwin S C 2008 Science 319 1776.
[45] Chen Y F, Johnson E, Peng X G 2007 J.Am.Chem.Soc. 129 10937.
[46] Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618.
[47] Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B. 56 281.
[48] Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667.
[49] Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103.
[50] Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.
[51] Koester S J, Li H, Li M 2012 Opt. Express 20 20330.
[52] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936.
[53] Sun Z P, Martinez A, Wang F. 2016 Nat. Photonics 10 227.
[54] Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351.
[55] Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710.
[56] Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B Condens. Matter. 80 195415.
[57] Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030.
[58] Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771.
[59] Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387.
[60] Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501.
[61] Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K,Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575.
[62] Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102.
[63] Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 Josa. A. 40 1545
[64] Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401.
[65] Boyd R W, Shi Z 2015 Photonics Sci. Found. Technol. Appl. 1 363.
计量
- 文章访问数: 74
- PDF下载量: 8
- 被引次数: 0