搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化

张源 陈晨 李美亚 罗山梦黛

引用本文:
Citation:

石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化

张源, 陈晨, 李美亚, 罗山梦黛

Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO2@Au nanostructure

Zhang Yuan, Chen Chen, Li Mei-Ya, Luoshan Mengdai
PDF
HTML
导出引用
  • 染料敏化太阳能电池(dye-sensitized solar cells, DSCs)因其制备工艺简单、成本低廉以及优异的光学性质在近年来引起了大家的广泛关注. 为了获得更优的光电性能, 利用球磨法制备了一系列不同含量纳米结构SiO2@Au和固定含量石墨烯协同掺杂的复合光阳极薄膜, 并制备了相应的DSCs. 研究了纳米结构SiO2@Au和石墨烯联合掺杂对光阳极及其相应DSCs光电转换性能的影响. 金纳米颗粒因其局域表面等离子体共振效应能够有效提高DSCs的短路电流密度. 而石墨烯作为典型的二维材料, 具有较大的比表面积以及高导电性等优异性质, 有利于增加薄膜的比表面积. 当纳米结构SiO2@Au和石墨烯协同掺杂至光阳极薄膜内部, 且SiO2@Au掺杂量为1.5%时, 相应电池的短路电流密度为15.59 mA·cm–2, 光电转换效率为6.68%, 相比基于传统纯TiO2光阳极电池的性能分别提高了15.67%和8.8%. 研究表明, 基于不同含量复合纳米结构SiO2@Au和固定量石墨烯共掺的DSCs性能的提高, 主要归因于复合纳米结构SiO2@Au的掺入, 其中分布较为均匀的金纳米颗粒作为光学天线可以将光局域到颗粒表面, 增强表面电磁场强度, 有效增强光与物质的相互作用, 优化了染料的光吸收能力, 增加薄膜内部光生载流子数量. 而石墨烯的引入则改善了光阳极薄膜的比表面积, 增加了薄膜整体对染料的吸附量, 且石墨烯良好的导电性能加快了光生载流子的传输, 两者协同作用实现了DSCs的光电转换性能的优化.
    Attributed to facile fabrication, low production costs and outstanding photoelectric properties, dye-sensitized solar cells (DSCs) have attracted widespread attention in recent years. In order to achieve better photoelectric conversion efficiency of the DSCs, a series of TiO2 nanocomposite photoanodes co-doped with different amounts of hybrid SiO2@Au nanostructures and certain amount of graphene are prepared by a mechanical ball milling method. The influence of SiO2@Au nanostructures and graphene on the performance of the photoanodes and their DSCs were investigated. The Au nanoparticles can remarkably enhance the short-circuit current density (Jsc) due to the local surface plasmon resonance effect of the noble metal nanoparticles. As a unique two-dimensional material, graphene has several amazing characteristics, such as high specific surface area and excellent conductivity. Studies showed that by introducing both SiO2@Au nanostructures and graphene, the light-absorbing, electron mobility and dye loading of the photoanodes were remarkably increased. Experimental results indicated that in comparison with those DSCs based with pure TiO2 photoanode, the DSCs with photoanodes incorporated with SiO2@Au nanostructures and graphene showed the optimal performance with short-circuit current density (Jsc) of 15.59 mA/cm2 and photoelectric conversion efficiency (PCE) of 6.68%, increasing significantly by 15.67% and 8.8%, respectively. This significant enhancement in Jsc and PCE of DSCs are mainly attributed to the increase in light-absorption and dye-loading of the photoanodes due to the hybrid SiO2@Au nanostructures and graphene.
      通信作者: 李美亚, 18064087417@163.com ; 罗山梦黛, Luosmd@hbut.edu.cn
    • 基金项目: 其它- 极化诱导铁电/锰氧化物异质结界面相变调控电阻变换及其机理研究(Q20181903)
      Corresponding author: Li Mei-Ya, 18064087417@163.com ; Luoshan Mengdai, Luosmd@hbut.edu.cn
    [1]

    Kong F T, Dai S Y, Wang K J 2007 Adv. Opto. Electron. 13 75384

    [2]

    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010 Chem. Rev. 110 6595Google Scholar

    [3]

    Jena A, Mohanty S P, Kumar P, Naduvath J, Gondane V, Lekha P, Das J, Narula H K, Mallick S, Bhargava P 2012 T. Indian Ceram. Soc. 71 1Google Scholar

    [4]

    Zhang S, Yang X, Numata Y, Han L 2013 Energy Environ. Sci. 61 443

    [5]

    O'regan B, Grätzel M 1991 Nature 1991 353

    [6]

    Yin J F, Velayudham M, Bhattacharya D, Lin H C, Lu K L 2012 Coordin. Chem. Rev. 256 23

    [7]

    Zhang Q, Cao G 2011 Nano Today 6 91Google Scholar

    [8]

    Chandiran A K, Comte P, Humphry-baker R, Kessler F, Yi C Y, Nazeeruddin M K, Grätzel M 2013 Adv. Funct. Mater. 23 2775Google Scholar

    [9]

    Liu B, Aydil E S 2009 J. Am.Chem. Soc. 131 3985Google Scholar

    [10]

    Cozzoli P D, Kornowski A, Weller H 2003 J. Am. Chem. Soc. 125 14539Google Scholar

    [11]

    Qin X, Wang H C, Li J L, Chen Q 2015 Talanta 139 56Google Scholar

    [12]

    Gurvinder S, Antonius T J, Sulalit B, Sondre V, Jens-Petter A, Wilheim R G 2014 Appl. Surf. Sci. 311 780Google Scholar

    [13]

    Zhang L, Niu W X, Xu G B 2012 Nano Today 7 586Google Scholar

    [14]

    Sun Z H, Yang Z, Zhou J H, Yeung M H, Ni W H, Wu H K, Wang J F 2009 Angew. Chem. 48 2881Google Scholar

    [15]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Sov. Rev. 42 2679Google Scholar

    [16]

    Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q 2013 Nanoscale 5 5368Google Scholar

    [17]

    Tapan K S, Catherine J M 2004 J. Am. Chem. Soc 126 8648Google Scholar

    [18]

    Suljo L, Phillip C, David B I 2011 Nat. Mater. 10 1038

    [19]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [20]

    Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943Google Scholar

    [21]

    Chen S, Ingran R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G 1998 Science 280 2098Google Scholar

    [22]

    Pietron J J, Hicks J F, Murray R W 1999 J. Am. Chem. Soc. 121 5565Google Scholar

    [23]

    Fang X L, Li M Y, Guo K M, Liu X L, Zhu Y D, Sebo B, Zhao X Z 2014 Sol. Energy 101 176Google Scholar

    [24]

    He Z M, Phan H, Liu J, Nguyen T Q, Tan T Y 2013 Adv. Mater. 5 6900

    [25]

    Brown M D, Suteewong T, Kumar R S S, D’Innocenzo V, Petrozza A, Lee M M, Wiesner U, Snaith H 2011 Nano lett. 11 438Google Scholar

    [26]

    Du L C, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M 2009 J. Phys. Chem. C 113 6454Google Scholar

    [27]

    Hägglund C, Zäch M, Kasemo B 2008 Appl. Phys. Lett. 92 013113Google Scholar

    [28]

    Qi J F, Dang X N, Hammond P T, Belcher A M 2011 ACS Nano 5 7108Google Scholar

    [29]

    Geim A K 2009 Science 324 1530Google Scholar

    [30]

    Luoshan M D, Li M Y, Liu X L, Guo K M, Bai L H, Zhu Y D, Sun B L, Zhao X Z 2015 J. Power Sources 287 231Google Scholar

    [31]

    Luoshan M D, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z 2016 J. Power Sources 307 468Google Scholar

  • 图 1  (a) SiO2球TEM图; (b) SiO2@Au复合结构TEM图; (c) 金纳米颗粒EDS图; (d) 纯金纳米颗粒光吸收谱图

    Fig. 1.  (a) TEM image of the SiO2 sphere; (b) TEM image of the SiO2@Au; (c) EDS image of the Au nanoparticles; (d) absorption spectra of pure Au nanoparticles.

    图 2  SiO2@Au不同掺杂含量TiO2薄膜的紫外-可见光谱测试曲线 (a)吸收光谱; (b)漫反射光谱; (c)透射光谱; (d)染料脱吸附光谱

    Fig. 2.  (a) UV-vis absorption spectra; (b) diffuse reflectance spectra; (c) transmittance spectra; (d) spectra of the dyes desorbed from the TiO2 films containing different amounts of SiO2@Au.

    图 3  复合结构SiO2@Au不同掺杂含量相应的DSCs (a) J-V性能曲线; (b) 电化学阻抗谱

    Fig. 3.  (a) J-V curves; (b) the Nyquist plots of EIS of the DSCs varying with the concentration of SiO2@Au.

    表 1  不同光阳极的DSCs光电性能参数

    Table 1.  Photoelectric performance parameters of the DSCs with different photoanodes.

    DSCsJsc/mA·cm–2Voc/mVFFη
    Pure13.4786800.676.14
    0.5%15.4366780.586.07
    1.0%15.4426790.616.40
    1.5%15.596800.636.68
    2.0%14.796820.626.25
    下载: 导出CSV
  • [1]

    Kong F T, Dai S Y, Wang K J 2007 Adv. Opto. Electron. 13 75384

    [2]

    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010 Chem. Rev. 110 6595Google Scholar

    [3]

    Jena A, Mohanty S P, Kumar P, Naduvath J, Gondane V, Lekha P, Das J, Narula H K, Mallick S, Bhargava P 2012 T. Indian Ceram. Soc. 71 1Google Scholar

    [4]

    Zhang S, Yang X, Numata Y, Han L 2013 Energy Environ. Sci. 61 443

    [5]

    O'regan B, Grätzel M 1991 Nature 1991 353

    [6]

    Yin J F, Velayudham M, Bhattacharya D, Lin H C, Lu K L 2012 Coordin. Chem. Rev. 256 23

    [7]

    Zhang Q, Cao G 2011 Nano Today 6 91Google Scholar

    [8]

    Chandiran A K, Comte P, Humphry-baker R, Kessler F, Yi C Y, Nazeeruddin M K, Grätzel M 2013 Adv. Funct. Mater. 23 2775Google Scholar

    [9]

    Liu B, Aydil E S 2009 J. Am.Chem. Soc. 131 3985Google Scholar

    [10]

    Cozzoli P D, Kornowski A, Weller H 2003 J. Am. Chem. Soc. 125 14539Google Scholar

    [11]

    Qin X, Wang H C, Li J L, Chen Q 2015 Talanta 139 56Google Scholar

    [12]

    Gurvinder S, Antonius T J, Sulalit B, Sondre V, Jens-Petter A, Wilheim R G 2014 Appl. Surf. Sci. 311 780Google Scholar

    [13]

    Zhang L, Niu W X, Xu G B 2012 Nano Today 7 586Google Scholar

    [14]

    Sun Z H, Yang Z, Zhou J H, Yeung M H, Ni W H, Wu H K, Wang J F 2009 Angew. Chem. 48 2881Google Scholar

    [15]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Sov. Rev. 42 2679Google Scholar

    [16]

    Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q 2013 Nanoscale 5 5368Google Scholar

    [17]

    Tapan K S, Catherine J M 2004 J. Am. Chem. Soc 126 8648Google Scholar

    [18]

    Suljo L, Phillip C, David B I 2011 Nat. Mater. 10 1038

    [19]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [20]

    Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943Google Scholar

    [21]

    Chen S, Ingran R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G 1998 Science 280 2098Google Scholar

    [22]

    Pietron J J, Hicks J F, Murray R W 1999 J. Am. Chem. Soc. 121 5565Google Scholar

    [23]

    Fang X L, Li M Y, Guo K M, Liu X L, Zhu Y D, Sebo B, Zhao X Z 2014 Sol. Energy 101 176Google Scholar

    [24]

    He Z M, Phan H, Liu J, Nguyen T Q, Tan T Y 2013 Adv. Mater. 5 6900

    [25]

    Brown M D, Suteewong T, Kumar R S S, D’Innocenzo V, Petrozza A, Lee M M, Wiesner U, Snaith H 2011 Nano lett. 11 438Google Scholar

    [26]

    Du L C, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M 2009 J. Phys. Chem. C 113 6454Google Scholar

    [27]

    Hägglund C, Zäch M, Kasemo B 2008 Appl. Phys. Lett. 92 013113Google Scholar

    [28]

    Qi J F, Dang X N, Hammond P T, Belcher A M 2011 ACS Nano 5 7108Google Scholar

    [29]

    Geim A K 2009 Science 324 1530Google Scholar

    [30]

    Luoshan M D, Li M Y, Liu X L, Guo K M, Bai L H, Zhu Y D, Sun B L, Zhao X Z 2015 J. Power Sources 287 231Google Scholar

    [31]

    Luoshan M D, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z 2016 J. Power Sources 307 468Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [6] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [7] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [8] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [11] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [12] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [13] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [14] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [15] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [16] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [19] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [20] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
计量
  • 文章访问数:  8002
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-05-09
  • 上网日期:  2020-05-18
  • 刊出日期:  2020-08-20

/

返回文章
返回